physics

A Site for the Sciences

On Nov. 11, 1960, construction began on the Chemistry-Physics Building. The current site of the building once was occupied by the president’s garden and tennis courts.

Chellgren Center Names 37 New Fellows: 20 in A&S

The Chellgren Fellows Program is for students with exceptional academic potential and aspirations, who are eager to participate in a special learning community designed to cultivate extraordinary achievement.

UK Students Named Fulbright Recipients

Four students from the University of Kentucky have been selected as recipients of Fulbright U.S. Student Program scholarships. The UK recipients are among 1,900 U.S. citizens who will travel abroad for the 2013-2014 academic year through the prestigious program.

Skype with an Astronaut at A&S Sneak Peek

Catch a sneak peek of the amazing opportunities with the College of Arts & Sciences!

Dr. Ravat's Exploring the Solar System class had the privilege of doing a Skype interview with NASA Astronaut Dr. Drew Feustel. The Mission Specialist veteran detailed his drive to become an astronaut, his experiences in Space, and how NASA research connects to life on Earth.

Watch the full video here! vimeo.com/63330398

Skype with Astronaut Andrew Feustel

Dr. Ravat's AST/EES 310 class had the opportunity to speak with Dr. Andrew Feustel, NASA Astronaut and Mission Specialist for STS-125 and STS-134, on April 2nd, 2013. During this fascinating hour-long conversation, Dr. Feustel described what it is like to go into space, the importance of the scientific advances enabled by NASA, and recounted his experiences on the International Space Station and on the last human service mission to the Hubble Space Telescope.

Colloquium: Viscosity and Black Hole Physics

Dam Thanh Son, of University of Chicago, explores the theorist's relationship between viscosity and the physics of black holes.

Colloquium: Viscosity, Quark Gluon Plasma, and String Theory

Viscosity, quark gluon plasma, and string theory

Viscosity is a very old concept which was introduced to physics by Navier in the 19th century. However, in strongly coupled systems, viscosity is difficult to compute from first principle. In this talk I will describe some recent surprising developments in string theory which allow one to compute the viscosity for a class of strongly interacting quantum fluids not too dissimilar to the quark gluon plasma. I will describe efforts to measure the viscosity and other physical properties of the quark gluon plasma created in relativistic heavy ion collisions.

Cosmic Linear Accelerators: Extreme Reconnection and other Surprises from the Crab Nebula

The unexpected discovery of gamma-ray flares from the Crab Nebula may have surprising implications for plasma astrophysics. Standard particle acceleration mechanisms cannot account for the energies of the flaring photons. Instead, these observations point toward an acceleration process involving rapid destruction of magnetic field through reconnection. I will discuss the extreme particle acceleration process that may lead to the flares, and the likely role of current-driven instabilities in triggering reconnection in the Crab and elsewhere.

Colloquium: Glimpsing Color in the World of Black and White

Glimpsing color in a world of black and white

Protons, neutrons and all the many other strongly interacting subnuclear particles, known as hadrons, are made of quarks and gluons. These fundamental constituents are held together by a color force described by quantum chromodynamics (QCD). A detailed understanding of how the strong coupling regime of QCD, which is responsible for confinement and dynamical chiral symmetry breaking, determines the spectrum and structure of hadrons will be outlined. Such studies, both experimental and theoretical, color in the picture of strong dynamics. What we know now and the glimpses to come from accelerator facilities like that at Jefferson Lab will be described.

Higgs Discovery: Implications for Particle Physics - 2 Nov. 2012

The LHC has recently discovered a Higgs-like resonance with a mass of about 125 GeV. It may be the missing element of the so-called Standard Model of particle physics. This model was proposed a few decades ago, and, after the inclusion of neutrino masses, describes in an accurate way all measured observables not involving gravity. We shall discuss what are the possible implications of the Higgs Discovery for particle physics and, in particular, for theoretical and experimental physics High Energy Physics in the coming years.

Pages

X
Enter your Chemistry username.
Enter the password that accompanies your username.
Secure Login

This login is SSL protected

Loading