Skip to main content

Nanotechnology-Enabled Water Treatment: A Vision to Enable Decentralized Water Treatment

Date:
-
Location:
CP-114
Speaker(s) / Presenter(s):
Pedro J.J. Alvarez

 

Nanotechnology-Enabled Water Treatment:

A Vision to Enable Decentralized Water Treatment

Pedro J.J. Alvarez

Dept. of Civil & Environmental Engineering, Rice University, Houston, TX. 77005, USA

Through control over material size, morphology and chemical structure, nanotechnology offers novel materials that are nearly “all surface” and that can be more reactive per atom than bulk materials. Such engineered nanomaterials (ENMs) can offer superior catalytic, adsorptive, optical, electrical and/or antimicrobial properties that enable new technology platforms for next-generation water treatment. This presentation will address emerging opportunities for nanotechnology to meet a growing need for safer and more efficient decentralized water treatment and reuse. Because water is by far the largest waste stream of the energy industry, emphasis will be placed on technological innovation to enable produced water reuse in remote (off-grid) oil and gas fields or offshore platforms, to minimize freshwater withdrawals and disposal challenges. Examples of applicable nano-enabled technologies include fouling-resistant membranes with embedded ENMs that allow for self-cleaning and repair; capacitive deionization with highly conductive and selective electrodes to remove multivalent ions that precipitate or cause scaling; rapid magnetic separation using superparamagnetic nanoparticles; solar-thermal processes enabled by nanophotonics to desalinate with membrane distillation; disinfection and advanced oxidation using nanocatalysts; and nanostructured surfaces that discourage microbial adhesion and protect infrastructure against biofouling and corrosion. These enabling technologies can be used to develop compact modular water treatment systems that are easy to deploy and that can treat challenging waters to protect human lives and support sustainable economic development. 

 

Short Bio

 

Pedro J.J. Alvarez is the George R. Brown Professor of Civil and Environmental Engineering at Rice University, where he also serves as Director of the NSF ERC on Nanotechnology-Enabled Water Treatment (NEWT). His research interests include environmental implications and applications of nanotechnology, bioremediation, fate and transport of toxic chemicals, water footprint of biofuels, water treatment and reuse, and antibiotic resistance control. Pedro received the B. Eng. Degree in Civil Engineering from McGill University and MS and Ph.D. degrees in Environmental Engineering from the University of Michigan. He is the 2012 Clarke Prize laureate and also won the 2014 AAEES Grand Prize for Excellence in Environmental Engineering and Science. Past honors include President of AEESP, the AEESP Frontiers in Research Award, the WEF McKee Medal for Groundwater Protection, the SERDP cleanup project of the year award, and various best paper awards with his students. Pedro currently serves on the advisory board of NSF Engineering Directorate and as Associate Editor of Environmental Science and Technology. He also serves on the Advisory Board of the Engineering Director of the National Science Foundation (NSF).