Skip to main content

Ice is cool!

Date:
-
Location:
CP-114
Speaker(s) / Presenter(s):
Dominik Heger

Abstract:

When an aqueous solution freezes at atmospheric conditions, essentially pure crystals of hexagonal ice are formed, and the solutes are threaded between the ice grains in ice boundary grooves or in puddles formed on the surface.

Certainly, there are several questions to ask about this process: What is the microstructure of ice with brine like? What is the chemical state and immediate environment of the solutes there? And, most importantly, how is the reactivity of the compounds influenced by freezing?

I would like to invite you to search for the answers with me, and I will be very pleased with your interest. So far, I have applied environmental scanning electron microscopy and optical spectroscopies in seeking indications of the aggregation, pH jumps, and electrical “freezing potential” formed at the interfaces of ice grains upon freezing. My goal is to explain the (photo) reactivity of compounds in environmental ices and during laboratory-based and industrial freezing procedures. I am currently a visiting scholar on sabbatical here at the University of Kentucky, and would appreciate any suggestions on facilities or methods available here.