Chemical Education (Active): Learning is not a simple process. How does one perceive information, formulate new knowledge, accommodate that new knowledge with prior knowledge, store and retain that knowledge, retrieve that knowledge, and then utilize it in some useful form? These processes are rarely effortless, perhaps especially so for students, as they are bombarded with new information, and dissimilar types of information, on a nearly daily basis. How do we, as educators, most effectively help these students learn? Much research and discussion, and new teaching approaches, have been devoted to trying to answer this very question. As yet, there are no simple answers, and there are unlikely to be. Learning is complex, and teaching students is complex. How can one best teach a classroom of students when those students favor different learning strategies, have different prior knowledge, and have different mental strengths and weaknesses? Current theories of effective education in STEM fields are centering around student-centered approaches to instruction, for example utilizing active learning, small group work, collaborative projects, flipped and hybrid classrooms, self-determination and metacognitive approaches, and a wide variety of strategies to coax students to be intrinsically motivated.
These approaches, more and more, are being informed by the many recent advances in educational psychology, particularly with regard to the STEM fields: science, technology, engineering, and mathematics. What students perceive, what and how they think, and their resultant feelings and behaviors can be correlated with positive and/or negative educational outcomes. As educators, we are tasked with harnessing and leveraging the positive, beneficial aspects of educational psychology, over the negative, non-beneficial (or even harmful) aspects. Yet, the vast majority of educators are not trained in even the most fundamental aspects of psychology, let alone that pertaining to education. How can we, then, bridge the content and behavioral divides between STEM instruction and educational psychology? The answers to these questions are important as we strive to increase the future prospects and the well-being of our students, and hence of our society as a whole.
My research interests lie in whether a ‘positive psychology’ approach to teaching will have a positive impact on student success and attitudes. Particular projects will be developed in conjunction with the academic interests of each student. However, each project will revolve around some aspect of chemical education and will include hypothesis development and scientific testing. Topics of particular interest include 1) the effects of affect (attitudes and emotions) on student enthusiasm for learning and understanding chemistry content and concepts, 2) the relationship between student enthusiasm and teaching approaches (e.g. flipped classrooms, active learning, cooperative learning), or 3) whether unconscious biases have a deleterious effect on students’ chemical intuition.
Please stop by my office in JSB 161-F anytime to discuss potential opportunities in chemical education research and for chemical education researchers.
Nucleic Acid Thermodynamics (Active): My lab studies the biophysical effects of cellular metabolites, potential drug compounds, and small molecule effectors on nucleic acid (DNA and RNA) structure and stability. Our principle experimental tool is temperature-dependent UV-Vis spectroscopy, although we utilize a variety of biochemical techniques, as needed.
RNA Group I Introns (Inactive): My lab has developed novel RNA catalysts, based on autocatalytic RNA group I introns, which can recombine RNA in predetermined ways. Using this technology, our group has sequence-specifically repaired mutations in functional RNA transcripts. Questions that remain with this and other recently developed catalysts include how to develop them for effective cellular activity, how they fold and function, and how they can be exploited for the development of new biotechnologies. Methods used in these projects involve molecular biology (for example, PCR, cloning, site-directed mutagenesis, and gel electrophoresis).