Marcelo Guzman

Research Interests:
Ph.D. California Institute of Technology 2002-2006
M.S. California Institute of Technology 2004
Postdoctoral Fellow - Harvard University 2007-2010

Marcelo I. Guzman is an Associate Professor of Chemistry and the Principal Investigator of the Environmental Chemistry Laboratory at the University of Kentucky, where he teaches analytical and environmental chemistry courses. In 2013, he received a NSF CAREER award. He earned his Ph.D. at the California Institute of Technology (Caltech, 2007) working on ice chemistry with Michael R. Hoffmann. In 2002, he was an Andrew W. Mellon Fellow at the Metropolitan Museum of Art (New York) working on Paper and Photograph Conservation in the Sherman Fairchild Center. For his postdoctoral experience he joined the Origins of Life Initiative at Harvard University as an Origins Fellow working with Scot T. Martin.

Honors and Awards
  • Outstanding Graduate Student Mentoring Award 2020.
  • Top Reviewer in the Global Peer Review Award (Web of Science). Top 1% in cross-field of reviewers in Publons between 9/1/2018 and 9/1/2019.
  • ACS Division of Environmental Chemistry Certificate of Appreciation for 15 years of service, 2019.
  • Appointed to the Photochemistry Section of the Editorial Board of Molecules 2019.
  • Appointed to the Editorial Advisory Board of the International Journal of Environmental Research and Public Health (IJERPH) 2019.
  • NSF CAREER Award 2013–2018.
  • Selected for the NSF/NASA RCN Origins Meeting at the Santa Fe Institute 2018.
  • Awarded an A&S international scholar program grant 2018–2019.
  • Awarded an ISARRA grant for the 2018 Conference.
  • Appointed to the Editorial Board of Environments 2018.
  • Awarded an International Global Atmospheric Chemistry (IGAC) Grant by the Surface Ocean Lower Atmospheric Study (SOLAS) International Project for the Cryosphere and Atmospheric Chemistry (CATCH) Workshop 2017.
  • Appointed to the Editorial Board of Atmosphere 2016.
  • ACS Young Academic Investigators Awardee in Organic Chemistry 2016.
  • College Research Activity Award for the Goldschmidt Conference 2013.
  • ACS Division of Environmental Chemistry Certificate of Merit for 10 years of service, 2014.
  • College Research Activity Award for the Goldschmidt Conference 2011.
  • Harvard Origins of Life Post-Doctoral Fellowship 2007–2010.
  • ISSOL award to young scientists 2008.
  • Young scientist best poster award. Gordon Research Conference: Origin of Life 2008.
  • Vito Vanoni Caltech Institute Fellowship 2002 – 2003.
  • Andrew W. Mellon Fellowship. The Metropolitan Museum of Art, New York 2002.
  • Research Council Fellowship, National University of Tucuman 1999–2001.
  • Honors medal to the best Chemistry Graduate from the National University system, class of 2000. Awarded by the Argentine Chemical Society.

The Guzman group studies processes occurring in environmental interfaces and is interested in research problems of interdisciplinary scope. We are currently investigating photooxidative reactions of organic molecules of environmental relevance to understand the processing of pollutants "on the surface of" and "in" atmospheric aerosols, clouds, and fogs. Some of our recent accomplishments include to have provided comprehensive photochemical and heterogeneous oxidation reaction mechanisms for the processing of dissolved organic matter molecular probes "in" and "on the surface of" aqueous aerosol mimics. The laboratory applies soft ionization methods such as online electrospray ionization mass spectrometry (OESI-MS), multiple chromatographic separations, one and two dimensional nuclear magnetic resonance, and various spectroscopies to contrast the fast oxidation of biomass burning and combustion emissions at the air-water interface versus the air-solid interface. One of our latest environmental chemistry developments is the creation of integrated unmanned aerial systems for environmental monitoring of trace gases. We are also interested on the potential use of photocatalysis for fuel production and to jumpstart a prebiotic chemical cycle related to the origin of life. Because past work has focused on the study of reactions in ice matrices, the laboratory is also experienced in ice chemistry. Learn more about our work at the group website:

Graduate Training

Physical and Environmental Organic Chemistry

Positions Available
Prof. Guzman is currently recruiting Ph.D. graduate students to work in applied chemistry research for the Fall 2021 admission. Atmospheric chemistry, water treatment, energy production, and astrobiology, are topics of special interest but other research problems may be considered. Funded research projects to support Research Assistanships for Ph.D. students are available for qualified candidates. For these reasons, we are searching for inspired and self-motivated graduate students interested in joining the lab. If you are a prospective student for the incoming 2021 class, please forward an application letter, a list of three references and CV to Professor Marcelo I. Guzman (marcelo dot guzman at uky dot edu; Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055). The cover letter should include a statement of your previous research experience, state your goal, and explain why our lab is going to help you to accomplish it.
If you are currently a graduate student of the 2020 class at UK or an undergraduate interested in registering for CHE 395, feel free to send me an email to schedule a meeting so we can talk about the exciting projects in the lab.
Recent News

Work on heterogeneous oxidations of wildfire emissions is covered by Phys.Org and UKnow.

Photochemistry research from the lab is highlighted by two ACS journals on July 16, 2020: J. Phys. Chem. and ACS Earth & Space Chem.

Checkout our previous press release at Phys.Org. More recent news are available through this link.

Selected Publications: 

55) Modes of transmission of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and factors influencing on the airborne transmission: a review. M. Delikhoon, M.I. Guzman, R. Nabizadeh, A.N. Baghani. International Journal of Environmental Research and Public Health (2021), 18 (2), 395; DOI: 10.3390/ijerph18020395. PDF

54) An Overview of the Effect of Bioaerosol Size in COVID-19 Transmission. M.I. Guzman. International Journal of Health Planning and Management (2020). DOI: 10.1002/hpm.3095.PDF

53) Dark iron-catalyzed reactions in acidic and viscous aerosol systems efficiently form secondary brown carbon. H.A. Al-Abadleh, M.S. Rana, W. Mohammed, and M.I. Guzman. Environmental Science and Technology (2021), 55, 209-219, DOI: 10.1021/acs.est.0c05678. PDF

52) Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System. T.J. Schuyler, B. Irvin, K. Abad, J.T. Thompson, K. Liu and M.I. Guzman. Sensors (2020), 20 (23), 6974; DOI: 10.3390/s20236974. PDF

51) Atmospheric Measurements with Unmanned Aerial Systems (UAS). M.I. Guzman. Atmosphere (2020), 11 (11), 1208, DOI: 10.3390/atmos11111208. PDF

50) Oxidation of Phenolic Aldehydes by Ozone and Hydroxyl Radicals at the Air-Water Interface. M.S. Rana and M.I. Guzman. Journal of Physical Chemistry A (2020), 124, 8822-8833, DOI: 10.1021/acs.jpca.0c05944.

49) University of Kentucky measurements of wind, temperature, pressure and humidity in support of LAPSE-RATE using multi-site fixed-wing and rotorcraft unmanned aerial systems. S.C.C.Bailey, M.P. Sama, C.A. Canter, L.F. Pampolini, Z.S. Lippay, T.J. Schuyler, J.D. Hamilton, S.B. MacPhee, I.S. Rowe, C.D. Sanders, V.G. Smith, C.N. Vezzi, H.M. Wight, J.B. Hoagg, M.I. Guzman, and S.W. Smith.Earth Syst. Sci. Data (2020), DOI: 10.5194/essd-12-1759-2020. PDF

48) Bioaerosol Size Effect in COVID-19 Transmission. M.I. Guzman. Preprints (2020), 202004.0093. DOI: 10.20944/preprints202004.0093.v2. PDF

47) Understanding the Effect of Host Structure of Nitrogen Doped Ultrananocrystalline Diamond Electrode on Electrochemical Carbon Dioxide Reduction. N. Wanninayake, Q. Ai, R. Zhou, M.A. Hoque, S. Herrell, M.I. Guzman, C. Risko, and D.Y. Kim. Carbon (2020), 408-419, DOI: 10.1016/j.carbon.2019.10.022.

46) Production of Singlet Oxygen (1O2) During the Photochemistry of Aqueous Pyruvic Acid: The Effects of pH and Photon Flux under Steady State O2(aq) Concentration. A.J. Eugene and M.I. Guzman. Environmental Science and Technology (2019), 53, 12425-12432, DOI: 10.1021/acs.est.9b03742.

45) Monitoring Tropospheric Gases with Small Unmanned Aerial Systems (sUAS) during the Second CLOUDMAP Flight Campaign. T.J. Schuyler, S.C.C. Bailey, and M.I. Guzman. Atmosphere (2019), 10 (8), 434, DOI: 10.3390/atmos10080434. PDF

44) Crystal Structure of Zymonic Acid and a Redetermination of its Precursor, Pyruvic Acid. D. Heger, A.J. Eugene, S.R. Parkin and M.I. Guzman. Acta Crystallographica Section E: Crystallographic Communications (2019), 75 (6), 858-862, DOI: 10.1107/S205698901900707. PDF

43) Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. L. Barbieri, S.T. Kral, S.C.C. Bailey, A.E. Frazier, J.D. Jacob, J. Reuder, D. Brus, P.B. Chilson, C. Crick, C. Detweiler, A. Doddi, J. Elston, H. Foroutan, J. Gonzalez-Rocha, B.R. Greene, M.I. Guzman, A.L. Houston, A. Islam, O. Kemppinen, D. Lawrence, E.A. Pillar-Little, S.D. Ross, M. Sama, D.G. Schmale III, T.J. Schuyler, A. Shankar, S.W. Smith, S. Waugh, C. Dixon, S. Borenstein, and G. de Boer. Sensors (2019), 19 (9), 2179, DOI: 10.3390/s19092179. PDF

42) Using a Balloon Launched Unmanned Glider to Validate Real-Time WRF Modeling. T.J. Schuyler, S.M.I. Gohari, G. Pundsack, D. Berchoff, and M.I. Guzman. Sensors (2019), 19 (8), 1914, DOI: 10.3390/s19081914. PDF

41) The Effects of Reactant Concentration and Air Flow Rate in the Consumption of Dissolved O2 During the Photochemistry of Aqueous Pyruvic Acid. A.J. Eugene and M.I. Guzman. Molecules (2019), 24 (6), 1124, DOI: 103390/molecules24061124. PDF

40) Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. M.A. Hoque and M.I. Guzman. Materials (2018), 11 (10), 1190, DOI: 10.3390/ma11101990. PDF

39) An Overview of Dynamic Heterogeneous Oxidations in the Troposphere. E.A. Pillar-Little and M.I. Guzman. Environments (2018), 5 (9), 104, DOI: 10.3390/environments5090104. PDF

38) Cross Photoreaction of Glyoxylic and Pyruvic Acids in Model Aqueous Aerosol. S.-S. Xia, A.J. Eugene, and M.I. Guzman. Journal of Physical Chemistry A (2018), 122, 6457-6466, DOI: 10.1021/acs.jpca.8b05724. PDF

37) Enhanced Acidity of Acetic and Pyruvic Acids on the Surface of Water. A.J. Eugene, E.A. Pillar, A.J. Colussi, and M.I. Guzman. Langmuir (2018), 34, 9307-9313, DOI: 10.1021/acs.langmuir.8b01606. PDF

36) Reply to "Comment on 'Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid.'" A.J. Eugene and M.I. Guzman. Journal of Physical Chemistry A (2017), 121, 8741-8744, DOI: 10.1021/acs.jpca.7b08273. PDF

35) Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases. T.J. Schuyler and M.I. Guzman, Atmosphere (2017), 8 (10), 206, DOI:10.3390/atmos8100206. PDF

34) Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, and M.A. Grela. Applied Catalysis B: Environmental (2017), 217, 485-493, DOI: 10.1016/j.apcatb.2017.05.058. PDF

33) Oxidation of Substituted Catechols at the Air-Water Interface: Production of Carboxylic Acids, Quinones, and Polyphenols. E.A. Pillar and M.I. Guzman. Environmental Science and Technology (2017), 51, 4951-4959, DOI: 10.1021/acs.est.7b00232. PDF

32) Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid. A.J. Eugene and M.I. Guzman. Journal of Physical Chemistry A (2017), 121, 2924-2935, DOI: 10.1021/acs.jpca.6b11916. PDF

31) Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites. R. Zhou, K. Basu, H. Hartman, C.J. Matocha, S.K. Sears, H. Vali, and M.I. Guzman. Scientific Reports (2017), 7, 533. DOI: 10.1038/s41598-017-00558-1. PDF

30) Nitrate Radicals and Biogenic Volatile Organic Compounds: Oxidation, Mechanisms and Organic Aerosol. N.L. Ng, S.S. Brown, A.T. Archibald, E. Atlas, R.C. Cohen, J.N. Crowley, D.A. Day, N.M. Donahue, J.L. Fry, H. Fuchs, R.J. Griffin, M.I. Guzman, H. Herrmann, A. Hodzic, Y. Iinuma, J.L. Jimenez, A. Kiendler-Scharr, B.H. Lee, D.J. Luecken, J. Mao, R. McLaren, A. Mutzel, H.D. Osthoff, B. Ouyang, B. Picquet-Varrault, U. Platt, H.O.T. Pye, Y. Rudich, R.H. Schwantes, M. Shiraiwa, J. Stutz, J.A. Thornton, A. Tilgner, B.J. Williams, R.A. Zaveri. Atmospheric Chemistry and Physics (2017), DOI: 10.5194/acp-17-2103-2017. PDF

29) Aqueous Photochemistry of Glyoxylic Acid. A.J. Eugene, S.-S. Xia, and M.I. Guzman. Journal of Physical Chemistry A (2016), 120, 3817-3826, DOI: 10.1021/acs.jpca.6b00225. PDF

28) Photocatalytic Reduction of Fumarate to Succinate on ZnS Mineral Surfaces. R. Zhou and M.I. Guzman. Journal of Physical Chemistry C (2016), 120, 7349-7357, DOI: 10.1021/acs.jpcc.5b12380, 2016. PDF

27) Heterogeneous Oxidation of Catechol. E.A. Pillar, R. Zhou, and M.I. Guzman. Journal of Physical Chemistry A (2015), 119, 10349-10359, DOI: 10.1021/acs.jpca.5b07914. PDF

26) Secondary Organic Aerosol (SOA) Formation from β-pinene + NO3 System: Effects of Humidity and Peroxy Radical Fate. C.M. Boyd, J. Sanchez, L. Xu, A.J. Eugene, T. Nah, W.-Y. Tuet, M.I. Guzman, and N.L. Ng. Atmospheric Chemistry and Physics (2015), 15, 7497–7522, DOI: 10.5194/acp-15-7497-2015. PDF

25) Catechol oxidation by ozone and hydroxyl radicals at the air-water interface. E.A. Pillar, R.C. Camm, and M.I. Guzman. Environmental Science & Technology (2014), 48, 14352-14360, DOI: 10.1021/es504094x. PDF

24) CO2 Reduction under Periodic Illumination of ZnS. R.-X. Zhou and M.I. Guzman. Journal of Physical Chemistry C (2014), 118, 11649-11656, DOI: 10.1021/jp4126039. PDF

23) A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. T. Bartels-Rausch, H.-W. Jacobi, T.F. Kahan, J.L. Thomas, E.S. Thomson, J.P.D. Abbatt, M. Ammann, J.R. Blackford, H. Bluhm, C. Boxe, F. Domine, M.M. Frey, I. Gladich, M.I. Guzman, D. Heger, Th. Huthwelker, P. Klan, W.F. Kuhs, M.H. Kuo, S. Maus, S.G. Moussa, V.F. McNeill, J.T. Newberg, J.B.C. Pettersson, M. Roeselova, J.R. Sodeau. Atmospheric Chemistry and Physics (2014), 14, 1587-1633, DOI: 10.5194/acp-14-1587-2014. PDF or PDF

22) Negative production of acetoin in the photochemistry of aqueous pyruvic acid. A.J. Eugene, S.-S. Xia, and M.I. Guzman. Proceedings of the National Academy of Science of the United States of America (2013), 110, E4274-E4275, DOI: 10.1073/pnas.1313991110. PDF

21) Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone. E.A. Pillar, M.I. Guzman, and J.M. Rodriguez. Environmental Science & Technology (2013), 47, 10971-10979, DOI: 10.1021/es401700h. PDF

20) Organics in Environmental Ices: Sources, Chemistry, and Impacts. V.F. McNeill, A.M. Grannas, J.P.D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D.J. Donaldson, M.I. Guzman, D. Heger, T.F. Kahan, P. Klan, S. Masclin, C. Toubin, D. Voisin. Atmospheric Chemistry and Physics (2012), 12, 9653-9678, DOI: 10.5194/acp-12-9653-2012. PDF

19) Chemisorption on Semiconductors: the Role of Quantum Corrections on the Space Charge Regions in Multiple Dimensions. F. Ciucci, C. de Falco, M.I. Guzman, S. Lee, and T. Honda. Applied Physics Letters (2012), 100, 183106, DOI: 10.1063/1.4709483. PDF

18) Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation. M.I. Guzman, R.R. Athalye, and J.M. Rodriguez. Journal of Physical Chemistry A (2012), 116, 5428-5435, DOI: 10.1021/jp3011316. PDF

17) Abiotic Photosynthesis: From Prebiotic Chemistry to Metabolism. M.I. Guzman in Origins of Life: The Primal Selforganization. R. Egel et al. (eds.), Springer Verlag, Berlin-Heidelberg (2011), pp 85-105, DOI: 10.1007/978-3-642-21625-1_4, ISBN 978-3-642-21624-4.

16) Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis. Y.J. Li, Q. Chen, M.I. Guzman, C.K. Chan, and S.T. Martin. Atmospheric Chemistry and Physics (2011), 11, 121-132, DOI: 10.5194/acp-11-121-2011. PDF

15) From Prebiotic Chemistry to Metabolic Cycles. M.I. Guzman in Astrobiology: From the Big Bang to Civilizations. G.A. Lemarchand and G.Tancredi (ed.), (2010), pp. 223-247. ISBN 978-92-9089-163-5. Montevideo, UNESCO. PDF

14) Photo-Production of Lactate from Glyoxylate: How Minerals Can Facilitate Energy Storage in a Prebiotic World. M.I. Guzman and S.T. Martin. Chemical Communications (2010), 46, 2265-2267, DOI:10.1039/b924179e. PDF

13) Thermochromism of Model Organic Aerosol Matter. A.G. Rincon, M.I. Guzman, M.R. Hoffmann, and A.J. Colussi. Journal of Physical Chemistry Letters (2010), 1, 368-373, DOI: 10.1021/jz900186e. PDF

12) Optical absorptivity versus molecular composition of model organic aerosol matter. A.G. Rincon, M.I. Guzman, M.R. Hoffmann, and A.J. Colussi. Journal of Physical Chemistry A (2009), 113, 10512-10520, DOI: 10.1021/jp904644n. PDF

11) Prebiotic Metabolism: Production by Mineral Photoelectrochemistry of α-Ketocarboxylic Acids in the Reductive Tricarboxylic Acid Cycle. M.I. Guzman and S.T. Martin. Astrobiology (2009), 9, 833-842, DOI:10.1089/ast.2009.0356. PDF

10) Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases. C. Menor-Salván, M. Ruiz-Bermejo, M.I. Guzman, S. Osuna-Esteban, S. Veintemillas-Verdaguer. Chemistry-A European Journal (2009), 15, 4411-4418, DOI: 10.1002/chem.200802656. PDF

9) Oxaloacetate-to-Malate Conversion by Mineral Photoelectrochemistry: Implications for the Viability of the Reductive Tricarboxylic Acid Cycle in Prebiotic Chemistry. M.I. Guzman and S.T. Martin. International Journal of Astrobiology (2008), 7, 271-278, DOI: 10.1017/S1473550408004291. PDF

8) An overview of snow photochemistry: evidence, mechanisms and impacts. A.M. Grannas, A.E. Jones, J. Dibb, M. Ammann, C. Anastasio, H. Beine, M. Bergin, J. Bottenheim, C.S. Boxe, G. Carver, J.H. Crawford, F. Domine, M.M. Frey, M.I. Guzman, D. Heard, D. Helmig, M.R. Hoffmann, R.E. Honrath, L.G. Huey, M. Hutterli, H.W. Jacobi, P. Klan, B. Lefer, J. McConnell, J. Plane, R. Sander, J. Savarino, P.B. Shepson, W.R. Simpson, J. Sodeau, R. von Glasgow, R. Weller, E.W. Wolff, T. Zhu. Atmospheric Chemistry and Physics (2007), 7, 4329-4373, DOI: 10.5194/acp-7-4329-2007. PDF

7) Photolysis of Pyruvic Acid in Ice: Possible Relevance to CO and CO2 Ice Core Record Anomalies. Guzman M.I., M.R. Hoffmann, and A.J. Colussi. Journal of Geophysical Research (2007), 112, D10123, DOI: 10.1029/2006JD007886. PDF

6) Cooperative Hydration of Pyruvic Acid in Ice. M.I. Guzman, L. Hildebrandt, A.J. Colussi, and M.R. Hoffmann. Journal of the American Chemical Society (2006), 128, 10621-10624, DOI: 10.1021/ja062039v. PDF

5) Acidity of Frozen Electrolyte Solutions. C. Robinson, C.S. Boxe, M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry B (2006), 110; 7613-7616, DOI: 10.1021/jp061169n. PDF

4) Photoinduced Oligomerization of Aqueous Pyruvic Acid. M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry A (2006), 110, 3619-3626, DOI: 10.1021/jp056097z. PDF

3) Photogeneration of Distant Radical Pairs in Aqueous Pyruvic Acid Glasses. M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry A (2006), 110; 931-935, DOI: 10.1021/jp053449t. PDF

2) Characterization of the effect of white lead on some properties of proteinaceous binding media. SA Centeno, M.I. Guzman, A. Yamazaki-Kleps and C.O. Della Védova. Journal of the American Institute for Conservation (2004), 43, 139-150, DOI: 10.2307/4129649. PDF

1) Synthesis, stereochemistry and absolute configuration of deodarols and deodarones. M.B. Villecco, L.R. Hernandez, M.I. Guzman, C.A.N. Catalán, M.A. Bucio and P. Joseph-Nathan. Tetrahedron: Asymmetry (2001), 12 (21), 2947-2953, DOI: 10.1016/S0957-4166(01)00521-3. PDF

Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected