Dong-Sheng Yang

  • Professor of Chemistry
  • Chemistry
  • Inorganic
  • Materials
  • Physical
009 Chemistry-Physics Building
859-257-4622 (office), 858-257-6150 (lab)
Research Interests:
Education

Ph.D. University of Western Ontario, Canada

Research

Our research is in the areas of materials, organometallic and physical chemistry. We are particularly interested in molecular activation and catalysis, rational design of nanomaterials, and laser spectroscopy of chemical intermediates.

1. Metal-mediated hydrocarbon activation and functionalization

Hydrocarbons are the most abundant, low-cost stock for functionalized organic chemicals. Because of their chemical inertness, the transformation of the hydrocarbons to value-added products requires the activation of thermodynamically stable C-H and C-C bonds.  We focus on the activation and transformation of small hydrocarbon compounds using early transition metal and lanthanide atoms and clusters in the gas and solution phases. The transition metal centers are produced by laser vaporization, reactions are carried out with or without solvents, and intermediates and products are characterized using a variety of state-of-the-art spectrometric and spectroscopic methods and computational modelling. Our strategy is the systematic examination of the identity, size and electron configuration effects of the metal elements and structure-reactivity relationships of the linear, branched, and cyclic hydrocarbons. We aim at the fundamental understanding of reaction mechanisms and the development of green chemical processes for efficient and selective functionalization of hydrocarbon compounds. 

2. Rational design of carbon-based nanoparicles

Carbon nanoparticles have recently emerged as potential agents for chemical sensing, biosensing and bioimaging. These applications come from their distinct photoluminescence properties, coupled with the advantages of the low cost and low toxicity.  Our current effort is devoted to the rational design of carbon dots (graphene quantum dots, carbon nanodots, and polymer dots) and the tuning of their absorption and emission properties. We synthesize carbon dots using following approaches: (a) laser-induced top-down to break large carbon structures, (b) laser-assisted bottom-up to polymerize small molecular precursors, (c) surface functionalization, and (d) doping or embedding of metal ions. We characterize the nanoparticles using UV-Vis, IR, fluorescence, Raman, photoelectron, and atomic force & electron microscopic methods. We investigate the relationship of optical properties with the sizes and structures of the carbon core, functional groups on the surface, and identities of metal ions.

3. Laser spectroscopy of chemically reactive intermediates

In this project, we develop and use a variety of spectroscopic and imaging methods to characterize transient metal-containing intermediates formed in molecular activation and functionalization reactions. These methods include time-of-flight mass spectrometry, pulsed field ionization-zero electron kinetic energy (ZEKE), mass analyzed threshold ionization (MATI), infrared-ultraviolet (IR-UV) resonant photoionization, and photoelectron velocity-map imaging. In parallel to the laboratory measurements, we perform computational modeling to compare with the experimental spectra. The field is widely open, and we are well positioned as a major player. The new knowledge created from this project includes accurate ionization energies, metal-ligand and ligand-based vibrational frequencies, electron configurations, and molecular structures of the chemical intermediates. Our goals are to come up with general rules or concepts that can be used to predict the formation, structures, and properties of such species present in catalytic processes.

Our research activities provide broad training for students and prepare them effectively for promising careers. Our research group consists of students of both genders with diverse cultural backgrounds and has ongoing national and international collaborations. The students in our group have gone on successful positions in technical or educational workforce. Our research activities have been supported by the National Science Foundation, Petroleum Research Fund of the American Chemical Society, Kentucky Science and Engineering Foundation, and the University of Kentucky.

Graduate Training

Physical, Organometallic & Analytical Chemistry

Selected Publications: 

 2011 - Present 

D. Hewage, W. R. Silva, W. Cao, and D. -S. Yang, "La-Activated Bicyclo-oligomerization of Acetylene to Naphthalene", J. Am. Chem. Soc.138, 2468-71 (2016).

S. Kumari, W. Cao, Y. Zhang, M. Roudjane, and D. -S. Yang, "Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C-C Bond Coupling of Ethylene", J. Phys. Chem. A 120, 4482-89 (2016).

D. Hewage, M. Roudjane, W. R. Silva, S. Kumari, and D. -S. Yang, "Lanthanum-Mediated C-H Bond Activation of Propyne and Identification of La(C3H2) isomers", J. Phys. Chem. A. 119, 2857-62(2015).

L. Wu, C. Zhang, S. A. Krasnokutski, and D. -S. Yang, "Threshold Ionization, Structural Isomers, and Electronic States of M2O2 (M=Sc, Y, and La)", J. Chem. Phys. 140, 224307/1-9 (2014). 

S. Kumari and D. -S. Yang, "High-Resolution Electron Spectroscopy and Rotational Conformers of Group 6 Metal (Cr, Mo, and W) Bis(mesitylene) Sandwich Complexes" (Terry Miller Festschrift), J. Phys. Chem. A 117, 13336-13344 (2013).

S. Kumari, B. Sohnlein, D. Hewage, M. Roudjane, J. Lee, and D. -S. Yang, "Binding Sites and Electronic States of Group 3 Metal-Aniline Complexes probed by High-Resolution Electron Spectroscopy," J. Chem. Phys. 138,224304/1-9 (2013).

 X. Wang, J. Lee, and D. -S. Yang, "High-Resolution Electron Spectroscopy and Molecular Structures of Cu-(2,2'-bipyridine) and Cu-(4,4'-bipyridine)" (Invited article, Dennis Salahub Special Issue), Can. J. Chem. 91, 613-620 (2013).

S. Kumari, M. Roudjane, D. Hewage, Y. Liu, and D. -S. Yang, "High-Resolution Electron Spectroscopy of Lanthanide (Ce, Pr, and Nd) Complexes of Cyclooctatetraene: The role of 4f electrons," J. Chem. Phys. 138, 164307/1-9(2013).

L. Wu, C. Zhang, S. Krasnokutski, and D. –S. Yang, “Mass-Analyzed Threshold Ionization and Electronic States of M3O4 (M = Sc, Y, and La),” J. Chem. Phys. 137, 084312/1-7 (2012).

 L. Wu, Y. Liu, C. Zhang, S. Li, D. A. Dixon, and D. –S. Yang, “Mass-Analyzed Threshold Ionization and Excited State of Lanthanum Dioxide,“ J. Chem. Phys. 137, 034307/1-8 (2012).

Y. Lei, L. Wu, B. R. Sohnlein, and D. –S. Yang, “High-Spin Electronic States of Lanthanum-Arene Complexes: Nd(benzene) and Nd(naphthalene),“ J. Chem. Phys. 136, 204311/1-8 (2012).

M. Roudjane, S. Kumari, and D.-S. Yang, “Electronic States and Metal-Ligand Bonding of Gadolinium Complexes of Benzene and Cyclo-octatetraene,” J. Phys. Chem. A 116, 839-845 (2012).

Y. Liu, S. Li, B. R. Sohnlein, S. Kumari, M. Roudjane, and D. –S. Yang, “Electronic States and Pseudo Jahn-Teller Distortion of Heavy Metal-Monobenzene Complexes: M(C6H6) (M = Y, La, and Lu,”  J. Chem. Phys. 136, 134310/1-9 (2012).

D. –S. Yang, “High-Resolution Electron Spectroscopy of Metal-Aromatic Complexes,”J. Phys. Chem. Lett. (Perspective), 2, 25-33 (2011).

J. Lee, S. A. krasnokutski, and D. –S. Yang, “High-Resolution Electron Spectroscopy, Preferential Metal-Binding Sites, and Theromochemistry of Lithium Complexes of Polycyclic Aromatic Hydrocarbons,” J. Chem. Phys. 134, 024301/1-9 (2011).

D. –S. Yang, “Probing the Bonding and Structures of Metal-Organic Radicals with Zero Energy Electrons,” Sci. China Chem. (Special Issue: International Year of Chemistry 2011), 54 (12), 1831-1840 (2011).

J. S. Lee, Y. Lei, and D. –S. Yang, “Electron-Spin Multiplicities of Transition-Metal Aromatic Radicals and Ions: M[C6(CH3)6] and M+[C6(CH3)6] (M = Ti, V, and Co), J. Phys. Chem A, 115, 6509-6517 (2011).

 N. Mirsaleh-Kohan, W. D. Robertson, R. N. Compton, S. A. Krasnokutski, and D. –S. Yang, “Ionic and Vibrational Properties of An Ultra-Low Ionization Potential Molecule: Tetrkis(dimethylamino)ethylene,” Int. J. Mass Spectrom.  304, 57-65 (2011).

Y. Liu, C. Zhang, L. Wu, S. A. Krasnokutski, and D. –S. Yang, “Electronic States and Spin-Orbit Splitting of Lanthanum Dimer,“ J.  Chem. Phys. 135, 034309/1-7 (2011).

2005 - 2010 

  • S. A. Krasnokutski, J. S. Lee, and D. –S. Yang, “High-Resolution Electron Spectroscopy and Structures of Lithium-Nucleobase (Adenine, Uracil, and Thymine) Complexes,” J. Chem. Phys.132, 044304-1/8 (2010).
  • J. S. Lee, S. Kumari, and D. –S. Yang, “Conformational Isomers and Isomerization of Group 6 (Cr, Mo, and W) Metal-Bis(toluene) Sandwich Complexes Probed by Variable-Temperature Electron Spectroscopy,” (Klaus Mueller-Dethlefs Festschrift Special Issue),  J. Phys. Chem. A 114, 11277-84 (2010).
  • J. S. Lee, Y. Lei, S. Kumari, and D. –S. Yang, “Ring Deformation and p-Electron Redistribution of Methylbenzenes Induced by Metal Coordination,“ J. Phys. Chem. A 114, 9136-43 (2010).
  •  J. S. Lee, Y. Lei, S. Kumari, and D. –S. Yang, “Metal Coordination Converts the Tub-Shaped Cyclooctatetraene into an Aromatic Molecule: Electronic States and Half-sandwich Structures of Group III Metal-Cyclooctatetraene Complexes,” J. Chem. Phys. 131, 104304-1/7 (2009).
  • C. Zhang, S. A. Krasnokutski, B. Zhang and D. –S. Yang, “Binding Sites, Rotational Conformers and Electronic States of Sc-C6H5X (X = F, CH3, OH and CN) Probed by Pulsed-Field-Ionization Electron Spectroscopy,” J. Chem. Phys. 131, 054303-1/9 (2009).
  • S. A. Krasnokutski and D. –S. Yang,“High-Resolution Electron Spectroscopy and s / p Structures of M(pyridine) and M+(pyridine) (M = Li, Ca, and Sc) Complexes,” J. Chem. Phys.130, 134313/1-8 (2009).      
  • X. Wang and D. –S. Yang, “Bonding and Structures of Copper-Aminopyridine Complexes: High-Resolution Electron Spectroscopy and Ab Initio Calculations,” Can. J. Chem. (R. J. Puddephatt Special Issue), 87, 297-306 (2009).
  • B. Reed, C. –S. Lam, Y. –C. Chang, X. Xing, D. –S. Yang, and C. Y. Ng, “A High-Resolution Photoionization Study of 56Fe Using A Vacuum Ultraviolet Laser,” Astrophys. J. 693, 940-945 (2009).
  • S. A. Krasnokutski, Y. Lei, J. S. Lee, and D. –S. Yang, “Pulsed-Field Ionization Photoelectron and IR-UV Resonant Photoionization Spectroscopy of Al-Thymine,” J. Chem. Phys. 129, 124309/1-124309/9 (2008).
  • Y. Lei and D. –S. Yang, “Half-Sandwich Structure of Cyclopentadienyl Dialuminum [Al2(h5-C5H5)] from Pulsed-Field Ionization Electron Spectroscopy and Ab Initio Calculations,” J. Phys. Chem. A, 112, 1430-1435 (2008). 
  • B. R. Sohnlein, Y. Lei and D.-S. Yang, "Electronic States of Neutral and Cationic Bis(benzene)Titanium and Vanadium Sandwich Complexes Studied by Pulsed Field Ionization Electron Spectroscopy," J. Chem. Phys. 127, 114302/1-114302/10 (2007).
  • S. A. Krasnokutski and D. –S. Yang, “Pulsed Field Ionization Electron Spectroscopy and Molecular Structure of Aluminum Uracil,” J. Phys. Chem. A 111, 10567-10573 (2007).
  • X. Wang, B. R. Sohnlein, S. Li, J. F. Fuller and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy and Molecular Structures of Copper-(Pyridine)1,2,” Can. J. Chem.(Bancroft Special Issue), 85, 714-723 (2007).
  • X. Wang, J. S. Lee and D.-S. Yang, "Electron Spectroscopy, Molecular Structures, and Binding Energies of Al- and Cu-Imidazole," J. Phys. Chem. A 110, 12777-12784 (2006).
  • B. R. Sohnlein, J. F. Fuller, and D. –S. Yang, “Clamshell Structure of Sc(biphenyl) from High Resolution Photoelectron Spectroscopy,” J. Am. Chem. Soc.  128, 10692-10693 (2006).
  • X. Wang, J. S. Lee and D.-S. Yang, "Electron Spectroscopy, Molecular Structures, and Binding Energies of Al- and Cu-Imidazole," J. Phys. Chem. A 110, 12777-12784 (2006).
  • B. R. Sohnlein and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy of Group 6 Metal (Cr. Mo, and W) Bis(benzene) Sandwich Complexes,” J. Chem. Phys. 124, 134305-1/8 (2006).
  • X. Wang and D. –S. Yang, “Spectroscopy and Structures of Copper Complexes with Ethylenediamine and Methyl-Substituted Derivatives,” J. Phys. Chem. A 110, 7568-7576(2006).
  • X. Wang, J. S. Lee, and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy and Ab Initio Calculations of Copper-Diazine Complexes,” J. Chem. Phys. 125, 014309/1-9 (2006).
  • S. Li, B. R. Sohnlein, D. –S. Yang, J. Miyawaki, and K. Sugawara “Pulsed-Field Ionization Electron Spectroscopy and Conformation of Copper-Diammonia,” J. Chem. Phys., 122, 214316-1/8(2005).
  • J. Miyawaki, K. Sugawara, S. Li, and D. –S. Yang, “ZEKE Spectroscopy and Theoretical Calculations of Copper-Methylamine Complexes,” J. Phys. Chem. A, 109, 6697-6701(2005).
  • B. R. Sohnlein, S. Li, J. F. Fuller, and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy and Binding Energies of Alkali Metal-Dimethyl Ether and –Dimethoxyethane Complexes,” J. Chem. Phys. 123, 14318-1/7(2005).
  • B.R. Sohnlein, S. Li, and D. –S. Yang, “Electron Spin Multiplicities and Molecular Structures of Neutral and Ionic Scandium Benzene Complexes,” J. Chem. Phys. 123, 214306-1/7 (2005).

2000-2004

  • S. Li, J. F. Fuller, X. Wang, B. R. Sohnlein, P. Bhowmik, and D. –S. Yang, “Photoelectron Spectroscopy and Density Functional Theory of Puckered Ring Structures of Group 13 Metal-Ethylenediamine,” J. Chem. Phys. 121, 7692-7700 (2004).
  • X. Wang and D. –S. Yang, “A Hydrogen-Bond Stabilized Copper Complex: Cu-Ethylenediamine,” J. Phys. Chem. A 108, 6449-6451 (2004).
  • S. Li, J. F. Fuller, B. R. Sohnlein, G. K. Rothschopf, and D. –S. Yang, “Photoionization and Zero Electron Kinetic Energy Spectroscopy of M-P(CH3)3 and M-As(CH3)2 (M = Ga, In),” Can, J. Chem. (G. Herzberg Memorial Issue) 82, 1067-1076 (2004).
  • D.-S. Yang, "Photoelectron Spectroscopy," in Comprehensive Coordination Chemistry II:  From Biology to Nanotechnology, (J. McCleverty and T. Meyers, Editors-in-Chief), Vol. 1, Fundamentals, (A. B. P. Lever, Ed.), Elsevier:  Oxford, 2003, pp187-196
  • S. Li, G. K. Rothschopf, J. F. Fuller and D. –S. Yang, “Photoelectron and Photoionization Spectroscopy of Weakly Bound Aluminum-Methylamine Complexes,” J. Chem. Phys. 118, 8636-8644 (2003).
  • J. Miyawaki, D. –S. Yang, and K. Sugawara, “ZEKE Spectroscopy of the AgNH3 Complex,” Chem. Phys. Lett. 372, 627-631 (2003).
  • S. Li, B. R. Sohnlein, G. K. Rothschopf, J. F. Fuller and D. –S. Yang, “Pulsed-Field Ionization Zero Electron Kinetic Energy Spectroscopy and Theoretical Calculations of Copper Complexes: Cu-X(CH3)3 (X = N, P, As),” J. Chem. Phys. 119, 5406-5413 (2003).
  • S. Li, J. F. Fuller, B. R. Sohnlein and D. –S. Yang, “Zero Electron Kinetic Energy Photoelectron Spectroscopy and Density Functional Theory Calculations of Gallium-Methylamine Complexes,” J. Chem. Phys. 119, 8882-8889 (2003).
  • S. Li, G. K. Rothschopf and D. S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectroscopy and Density Functional Calculations of Al-P(CH3)3 and Al-As(CH3)3," J. Chem. Phys., 116, 6589-6594 (2002).
  • S. Li, G. K. Rothschopf and D. S. Yang, "Ionization and Dissociation Energies of Group 13 Metal Complexes with Group 15 Hydrides," J. Phys. Chem. A, 106, 6941-6944 (2002).
  • G. K. Rothschopf, S. Li and D.-S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectroscopy of Metal-Ether Complexes:  Y-O(CH3)2, Y-O(CD3)2, Y-[O(CH3)2]2, and Y-[O(CD3)2]2," J. Chem. Phys., 117, 8800-8804 (2002).
  • J. F. Fuller, S. Li, B. R. Sohnlein, G. K. Rothschopf and D.-S. Yang, "A Photoionization and Photoelectron Study of Vibrational and Electronic Cooling in Metal Molecular Beams," Chem. Phys. Lett., 366, 141-146 (2002).
  • D.-S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectra of Metal Clusters and Complexes," in Advances in Metal and Semiconductor Clusters, Vol. 5, Metal Ion Solvation and Metal-Ligand Interactions, (M. A. Duncan, Ed.), Elsevier:  Amsterdam, 2001, pp. 187-225.
  • D.-S. Yang, "Photoelectron Spectra of Metal-Containing Molecules with Resolutions Better Than 1 meV,"  Coord. Chem. Rev., 214, 187-213 (2001).
  • G. K. Rothschopf, S. Li, J. S. Perkins and D.-S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectroscopy of Weakly Bound In-NH2CH3, In-NH(CH3)2, and In-N(CH3)3 Complexes," J. Chem. Phys., 115, 4565-4572 (2001).
  • S. Li, G. K. Rothschopf, D. Pillai, B. R. Sohnlein, B. M. Wilson and D.-S. Yang, "Spectroscopy and Calculations of Weakly Bound Gallium Complexes with Ammonia and Monomethylamine," J. Chem. Phys., 115, 7968-7974 (2001).
  • D. B. Pedersen, M. Z. Zgierski, S. Anderson, D. M. Rayner, B. Simard, S. Li and D.-S. Yang, "Bonding in Transition Metal-Ether Complexes:  The Spectroscopy and Reactivity of the Zr Atom-Dimethyl Ether System," J. Phys. Chem., 105, 11462-11469 (2001).
  • G. K. Rothschopf, J. S. Perkins, S. Li and D.-S. Yang, "Zero Electron Kinetic Energy Spectroscopy and Theoretical Calculations of InNH3," J. Phys. Chem. A, 104, 8178-8182 (2000).
  • D.-S. Yang and P. A. Hackett, "ZEKE Spectroscopy of Free Transition Metal Clusters,"  J. Electron Spectrosc. Relat. Phenom., 106, 153-169 (2000).
  • B. Simard, S. A. Mitchell, D. M. Rayner and D.-S. Yang, "Structures, Energetics, and Reactivity of Metal Clusters and Metal-Ligand Species in the Gas Phase," in Metal-Ligand Interactions in Chemistry, Physics, and Biology, (N. Russo and D. R. Salahub, Eds.), Kluwer:  Dordrecht, 2000, pp. 239-294.
  • A. Berces, M. Z. Zgierski and D.-S. Yang, "Study of the Electronic and Geometric Structures of Transition Metal Molecules and Cluster Compounds Using DFT Calculations and ZEKE Spectroscopy," in Computational Molecular Spectroscopy, (P. Jensen and P. R. Bunker, Eds.), John Wiley Sons:  New York, 2000, pp. 109-134.
X
Enter your link blue username.
Enter your link blue password.
Secure Login

This login is SSL protected

Loading