Skip to main content

Dong-Sheng Yang

Research Interests:
Laser Spectroscopy and Computational Chemistry
Metal Catalysis
Optical Materials
Education

Ph.D. University of Western Ontario, Canada

Research

Our research is in the fields of laser spectroscopy and mass spectrometry, chemical catalysis, and materials chemistry. We are interested in spectroscopy of chemically reactive intermediates, solvent- and ligand-free metal catalysis, and laser synthesis and processing of nanomaterials.

1. Laser spectroscopy and mass spectrometry of transient species

We develop and use a variety of spectroscopic and imaging techniques to characterize transient metal-containing intermediates formed in molecular activation and functionalization reactions. These techniques include photoionization time-of-flight mass spectrometry, pulsed field ionization-zero electron kinetic energy (ZEKE) (J. Phys. Chem. Lett. 2, 25(2011)), mass analyzed threshold ionization (MATI) (J. Chem. Phys. 152, 144304(2020)), infrared-ultraviolet (IR-UV) resonant photoionization (J. Chem. Phys. 129, 124309 (2008)), and photoelectron velocity-map imaging (VMI) (J Phys. Chem. A 121, 8440 (2017)). In parallel to the laboratory measurements, we perform computational modeling to compare with the experimental spectra. The field is widely open, and we are well positioned as a major player. The new knowledge created from this project includes accurate ionization energies, metal-ligand and ligand-based vibrational frequencies, electron configurations, and molecular structures of the chemical intermediates. Our goals are to come up with general rules or concepts that can be used to predict the formation, structures, and properties of such species present in catalytic processes.

2. Chemical catalysis

We design chemical reactions that minimize the use and generation of hazardous substances, proceed with appreciable rates under a mild condition, and don’t require a tedious process for product isolation. We do chemical catalysis with metal catalysts in solutions, heterogeneous phases, or solvent-free gaseous environment. Metal catalysts are made by laser ablation in situ or as precatalysts. Gas-phase reactions are monitored with time-of-flight mass spectrometry, and reaction intermediates and products are characterized with laser spectroscopy and computations. Solution-phase or heterogenous reactions are tracked with techniques used in modern synthetic chemistry (GC/LC-MS, TLC, NMR, optical spectroscopy, etc.). Solid metal catalysts before and after reactions are characterized with state-of-the-art methods used in materials chemistry (TEM, SEM, XPS, XRD, XAS, etc).  Currently, we work on C-C bond coupling (ACS Appl. Nano. Mater. March 3, 2022, https://doi.org/10.1021/acsanm.2c00389J. Phys. Chem. C 2022, https://doi.org/10.1021/acs.jpcc.3c00268 J. Am. Chem. Soc.  138, 2468 (2016); J. Phys. Chem. A 121, 1233 (2017), J. Chem. Phys. 146, 184304 (2017).) and C-X (X-H, C, and N)/N-H activation (J. Organomet. Chem. 880, 187 (2019); J. Chem. Phys. 149, 034303 & 234301(2018), 153, 064304 (2020), 155, 034302 (2021).).  We aim at the fundamental understanding of reaction mechanisms and the development of green, efficient, and selective processes for designing organic compounds with valuable industrial applications.

3. Laser synthesis and processing of nanomaterials

Laser synthesis and processing in liquid is a clean and fast method for producing ligand-free nanomaterials with high-purity surfaces. The laser-generated particles are thus ideal for studying surface adsorbates under ambient environment and for surface functionalization in a stepwise manner. The ability to control the surface functionality step by step makes it possible to tailor nanoparticles for a wide range of applications in optics, energy, catalysis, or biomedicine. We currently work on rare-earth doped (J. Chem. Phys., 153, 064701(2020)) and carbon-based materials (ACS Appl. Nano. Mater. 2, 6948 (2019); Mater. Today Energy 13, 50 (2019), Nano Express, 1, 020018 (2020).). Raw materials for making carbon nanoparticles are cheap and abundant. Rare-earth doped particles show large anti-stokes shifts, sharp emission lines, long luminescence lifetimes, and superior photostability. We investigate effects of particle sizes and structures, surface functional groups, and identities of metal ions on the optical properties of nanomaterials.

Our research activities provide broad training for students and prepare them effectively for promising careers. Our research group consists of students of both genders with diverse cultural backgrounds and has ongoing national and international collaborations. The students in our group have gone on successful positions in technical or educational workforce. Our research activities have been supported by the National Science Foundation, the Department of Energy, Petroleum Research Fund of the American Chemical Society, and Kentucky Science and Engineering Foundation.

 

Graduate Training

Physical, Analytical & Organometallic Chemistry

Selected Publications:

2021-Present

P. Karna, Z. Finfrock, J. Lic, Y. Huc, and D. -S. Yang, "Water-Soluble Copper (I) Hydroxide Catalyst and its Formation in Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions," J. Phys. Chem. C 127, 5791-5799 (2023); https://doi.org/10.1021/acs.jpcc.3c00268.

Y. Zhang, T. Nakamura, L. Wu, W. Cao, G. Schoendorff, M. S. Gordon, and  D.-S.Yang, "Electronic States and Transitions of PrO and PrO+ probed by Threshold Ionization Spectroscopy and Spin-Orbit Multiconfiguration Perturbation Theory," J. Chem. Phys.  157, 114304 (2022); https://doi.org/10.1063/5.0113741.

W. R. Silva, M. Fitian, and D. -S. Yang, "Probing La and Ce Excited-State Reactivity with Resonant Two-Photon Ionization Spectroscopy", J. Phys. Chem. A, 126,  7613-7620 (2022).

P. Karna, M. Okeke, D. Meira, Z. Finfrock, and D.-S.Yang, "Water-Soluble Palladium Nanoclusters Catalysts in Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions", ACS Appl. Nano. Mater. 5, 3188 (2022)https://doi.org/10.1021/acsanm.2c00389.

L. Wu, G. Schoendorff, Y. Zhang, M. Roudjane, M. S. Gordon, and  D.-S. Yang,"Excited States of Lutetium Oxide and its Singly Charged Cation", J. Chem. Phys.156, 084303 (2022); https://doi.org/10.1063/5.0084483.

D. -S. Yang, "High-Resolution Photoelectron Spectroscopy" in Comprehensive Coordination Chemistry III (E. C. Constable, G. Parkin, L. Que Jr., Eds), Vol. 2. Elsevier, 217-240 (2021).

W. Cao and D. -S. Yang, "Lanthanide-Mediated C-H Activation: Spectroscopy, Structures, and Formation of Metal-Containing Intermediates" in Handbook of C-H Functionalization (D. Maiti, Ed.), Wiley, in press (2022).

S. Nyambo, Y. Zhang, and D. -S. Yang, "Vibronic Transitions and Spin-Orbit Coupling of Three-Memebered Metallacycles Formed by Lanthanide-Mediated Dehydrogenation of Dimethylamine", J. Chem. Phys. 155, 034302 (2021).

W. Cao, Y. Zhang, L. Wuand D. -S. Yang, "Threshold Ionization Spectroscopy and Theoretical Calculations of LnO (Ln = La and Ce)", J. Phys. Chem. A​  125, 1941-1948 (2021).

2016 - 2020

S. Nyambo, Y. Zhang, and D. -S. Yang, "Spectroscopic and Computational Characterization of Lanthanide-Mediated N-H and C-H Bond Activation of Methylamine", J. Chem. Phys. 153, 064304(2020).

R. L. Calabro, P. Karna, D. Y. Kim and D.-S. Yang, “Controlled Structure and Characterization of NaYF4:Yb/Er Upconverting Nanoparticles Produced by Laser Ablation in Liquid”, J. Chem. Phys. 153, 064701 (2020).

S. Wang, D. -S. Yang, and F. Yang, "Nitrogen-Induced Shift of Photoluminescence from Green to Blue Emission for Xylose-Derived Carbon Dots", Nano Express  1, 020018 (2020).

Y. Zhang and D. -S. Yang, “Spin-Orbit Coupling and Vibronic Transitions of Ce(C3H4) and Ce(C3H6) formed by the Ce Reaction with Propene: Mass-Analyzed Threshold Ionization and Relativistic Quantum Computation”, J. Chem. Phys. 152, 144304 (2020).

W. Wang, W. Sun, D. -S. Yang, and F. Yang, “Soybean-Derived Blue Photoluminescent Carbon Dots”, Beilstein J. Nanotechnol. 11, 606-619 (2020).

Y. Zhang, W. Cao, and D. -S. Yang, “Spin-Orbit Coupling and Vibronic Transitions of Two Ce(C4H6) Isomers Probed by Mass-Analyzed Threshold Ionization and Relativistic Quantum Chemical Computation”, J. Chem. Phys. 151, 124307 (2019).

R. L. Calabro, D. -S. Yang, and D. Y. Kim, “Controlled Nitrogen Doping of Graphene Quantum Dots Through Laser Ablation in Aqueous Solutions for Photoluminescence and Electrocatalytic Applications”, ACS Appl. Nano. Mater. 2, 6948-6959 (2019).

S.Wang, W. Sun, D. -S. Yang and F. Yang, "Conversion of Soybean Waste to Sub-Micron Porous-Hollow Carbon Spheres for Supercapacitor via a Reagent and Template-Free Route", Mater. Today Energy, 13, 50-55 (2019).

W. Cao, Y. Zhang, and D. -S. Yang, "La-Mediated Dehydrogenation and C-C Bond Cleavage of 1,4-Pentadiene and 1-Pentyne: Spectroscopy and Formation of La(C5H6) andLa(C3H4) Radicals", J. Organomet. Chem. (Special Issue Dedicated to Richard J. Puddephatt’s 75th Birthday) 880, 187-195 (2019).

R. L. Calabro, D. -S. Yang, and D. Y. Kim, "Liquid-Phase Laser Ablation Synthesis of Graphene Quantum Dots from Carbon Nano-Onions: Comparison with Chemical Oxidation", J. Colloid Interface Sci. 527, 132-140 (2018).

Y. Zhang, S. Nyambo, and D. -S. Yang, "Mass-Analyzed Threshold Ionization Spectroscopy of Lanthanide Imide LnNH (Ln = La and Ce) Radicals from N-H Bond Activation of Ammonia", J. Chem. Phys. 149, 234301/1-8 (2018).

W. Cao, Y. Zhang, S. Nyambo, and D. -S. Yang, "Spectroscopy and Formation of Lanthanum-Hydrocarbon Radicals Formed by C-H and C-C Bond Activation of 1-Pentene and 2-Pentene", J. Chem. Phys. 149, 034303/1-9 (2018).

W. Cao, D. Hewage, and D. -S. Yang, "Spectroscopy and Formation of Lanthanum-Hydrocarbon Radicals Formed by Association and Carbon-Carbon Bond Cleavage of Isoprene", J. Chem. Phys. 148, 194302/1-9(2018).

W. Cao, D. Hewage, and D. -S. Yang, "Lanthanum-Mediated Dehydrogenation of Butenes: Spectroscopy and Formation of La(C4H6) Isomers" J. Chem. Phys. 148, 044312/1-8 (2018).

W. R. Silver, W. Cao, and D. -S. Yang, "Low-Energy Photoelectron Imaging Spectroscopy of Lan(benzene) (n = 1 and 2)", J. Phys. Chem. A 121, 8440-8447 (2017).

W. Cao, D. Hewage, and D. -S. Yang, "Lanthanum-Mediated Dehydrogenation of 1- and 2-butynes: Spectroscopy and Formation of La(C4H4) Isomers", J. Chem. Phys. 147, 064303/1-9 (2017).

D. Hewage, W. Cao, S. Kumari, R. Silva, T. H. Li, and D. -S. Yang, "Spectroscopy and Formation of Lanthanum-Hydrocarbon Radicals Formed by C-C Bond Cleavage and Coupling of Propene", J. Chem. Phys. 146, 184304/1-8 (2017)

D. Hewage, W. Cao, J. H. Kim, Y. Wang, Y. Liu, and D. -S. Yang, "Spectroscopic Characterization of Nonconcerted [4+2] Cycloaddition of 1,3-Butadiene with Lanthanacyclopropene To Form Lanthanum-Benzene in the Gas Phase", J. Phys. Chem. A 121, 1233-1239 (2017).

S. Kumari, W. Cao, D. Hewage, R. Silva, and D. -S. Yang, "Mass-Analyzed Threshold Ionization Spectroscopy of Lanthanum-Hydrocarbon Radicals formed by C-H Bond Activation of Propene", J. Chem. Phys. 146, 074305/1-8 (2017).

D. Hewage, W. R. Silva, W. Cao, and D. -S. Yang, "La-Activated Bicyclo-oligomerization of Acetylene to Naphthalene", J. Am. Chem. Soc.138, 2468-71 (2016).

Y. Zhang, M. W. Schmidt, S. Kumari, M. S. Gordon, and D. -S. Yang, "Threshold Ionization and Spin-Orbit Coupling of Ceracyclopropene Formed by Ethylene Dehydrogenation" (Mark S. Gordon Festschrift), J. Phys. Chem. A 120, 6963-6969 (2016)

S. Kumari, W. Cao, Y. Zhang, M. Roudjane, and D. -S. Yang, "Spectroscopic Characterization of Lanthanum-Mediated Dehydrogenation and C-C Bond Coupling of Ethylene", J. Phys. Chem. A 120, 4482-89 (2016).

2010-2015

D. Hewage, M. Roudjane, W. R. Silva, S. Kumari, and D. -S. Yang, "Lanthanum-Mediated C-H Bond Activation of Propyne and Identification of La(C3H2) isomers", J. Phys. Chem. A. 119, 2857-62(2015).

L. Wu, C. Zhang, S. A. Krasnokutski, and D. -S. Yang, "Threshold Ionization, Structural Isomers, and Electronic States of M2O2 (M=Sc, Y, and La)", J. Chem. Phys. 140, 224307/1-9 (2014). 

S. Kumari and D. -S. Yang, "High-Resolution Electron Spectroscopy and Rotational Conformers of Group 6 Metal (Cr, Mo, and W) Bis(mesitylene) Sandwich Complexes" (Terry Miller Festschrift), J. Phys. Chem. A 117, 13336-13344 (2013).

S. Kumari, B. Sohnlein, D. Hewage, M. Roudjane, J. Lee, and D. -S. Yang, "Binding Sites and Electronic States of Group 3 Metal-Aniline Complexes probed by High-Resolution Electron Spectroscopy," J. Chem. Phys. 138,224304/1-9 (2013).

 X. Wang, J. Lee, and D. -S. Yang, "High-Resolution Electron Spectroscopy and Molecular Structures of Cu-(2,2'-bipyridine) and Cu-(4,4'-bipyridine)" (Dennis Salahub Special Issue), Can. J. Chem. 91, 613-620 (2013).

S. Kumari, M. Roudjane, D. Hewage, Y. Liu, and D. -S. Yang, "High-Resolution Electron Spectroscopy of Lanthanide (Ce, Pr, and Nd) Complexes of Cyclooctatetraene: The role of 4f electrons," J. Chem. Phys. 138, 164307/1-9(2013).

L. Wu, C. Zhang, S. Krasnokutski, and D. –S. Yang, “Mass-Analyzed Threshold Ionization and Electronic States of M3O4 (M = Sc, Y, and La),” J. Chem. Phys. 137, 084312/1-7 (2012).

 L. Wu, Y. Liu, C. Zhang, S. Li, D. A. Dixon, and D. –S. Yang, “Mass-Analyzed Threshold Ionization and Excited State of Lanthanum Dioxide,“ J. Chem. Phys. 137, 034307/1-8 (2012).

Y. Lei, L. Wu, B. R. Sohnlein, and D. –S. Yang, “High-Spin Electronic States of Lanthanum-Arene Complexes: Nd(benzene) and Nd(naphthalene),“ J. Chem. Phys. 136, 204311/1-8 (2012).

M. Roudjane, S. Kumari, and D.-S. Yang, “Electronic States and Metal-Ligand Bonding of Gadolinium Complexes of Benzene and Cyclo-octatetraene,” J. Phys. Chem. A 116, 839-845 (2012).

Y. Liu, S. Li, B. R. Sohnlein, S. Kumari, M. Roudjane, and D. –S. Yang, “Electronic States and Pseudo Jahn-Teller Distortion of Heavy Metal-Monobenzene Complexes: M(C6H6) (M = Y, La, and Lu,”  J. Chem. Phys. 136, 134310/1-9 (2012).

D. –S. Yang, “High-Resolution Electron Spectroscopy of Metal-Aromatic Complexes,”J. Phys. Chem. Lett. (Perspective), 2, 25-33 (2011).

J. Lee, S. A. krasnokutski, and D. –S. Yang, “High-Resolution Electron Spectroscopy, Preferential Metal-Binding Sites, and Theromochemistry of Lithium Complexes of Polycyclic Aromatic Hydrocarbons,” J. Chem. Phys. 134, 024301/1-9 (2011).

D. –S. Yang, “Probing the Bonding and Structures of Metal-Organic Radicals with Zero Energy Electrons,” Sci. China Chem. (Special Issue: International Year of Chemistry 2011), 54 (12), 1831-1840 (2011).

J. S. Lee, Y. Lei, and D. –S. Yang, “Electron-Spin Multiplicities of Transition-Metal Aromatic Radicals and Ions: M[C6(CH3)6] and M+[C6(CH3)6] (M = Ti, V, and Co), J. Phys. Chem A, 115, 6509-6517 (2011).

 N. Mirsaleh-Kohan, W. D. Robertson, R. N. Compton, S. A. Krasnokutski, and D. –S. Yang, “Ionic and Vibrational Properties of An Ultra-Low Ionization Potential Molecule: Tetrkis(dimethylamino)ethylene,” Int. J. Mass Spectrom.  304, 57-65 (2011).

Y. Liu, C. Zhang, L. Wu, S. A. Krasnokutski, and D. –S. Yang, “Electronic States and Spin-Orbit Splitting of Lanthanum Dimer,“ J.  Chem. Phys. 135, 034309/1-7 (2011).

S. A. Krasnokutski, J. S. Lee, and D. –S. Yang, “High-Resolution Electron Spectroscopy and Structures of Lithium-Nucleobase (Adenine, Uracil, and Thymine) Complexes,” J. Chem. Phys.132, 044304-1/8 (2010).

J. S. Lee, S. Kumari, and D. –S. Yang, “Conformational Isomers and Isomerization of Group 6 (Cr, Mo, and W) Metal-Bis(toluene) Sandwich Complexes Probed by Variable-Temperature Electron Spectroscopy,” (Klaus Mueller-Dethlefs Festschrift Special Issue),  J. Phys. Chem. A 114, 11277-84 (2010).

J. S. Lee, Y. Lei, S. Kumari, and D. –S. Yang, “Ring Deformation and p-Electron Redistribution of Methylbenzenes Induced by Metal Coordination,“ J. Phys. Chem. A 114, 9136-43 (2010).

2005 - 2009

  •  J. S. Lee, Y. Lei, S. Kumari, and D. –S. Yang, “Metal Coordination Converts the Tub-Shaped Cyclooctatetraene into an Aromatic Molecule: Electronic States and Half-sandwich Structures of Group III Metal-Cyclooctatetraene Complexes,” J. Chem. Phys. 131, 104304-1/7 (2009).
  • C. Zhang, S. A. Krasnokutski, B. Zhang and D. –S. Yang, “Binding Sites, Rotational Conformers and Electronic States of Sc-C6H5X (X = F, CH3, OH and CN) Probed by Pulsed-Field-Ionization Electron Spectroscopy,” J. Chem. Phys. 131, 054303-1/9 (2009).
  • S. A. Krasnokutski and D. –S. Yang,“High-Resolution Electron Spectroscopy and s / p Structures of M(pyridine) and M+(pyridine) (M = Li, Ca, and Sc) Complexes,” J. Chem. Phys.130, 134313/1-8 (2009).      
  • X. Wang and D. –S. Yang, “Bonding and Structures of Copper-Aminopyridine Complexes: High-Resolution Electron Spectroscopy and Ab Initio Calculations,” Can. J. Chem. (R. J. Puddephatt Special Issue), 87, 297-306 (2009).
  • B. Reed, C. –S. Lam, Y. –C. Chang, X. Xing, D. –S. Yang, and C. Y. Ng, “A High-Resolution Photoionization Study of 56Fe Using A Vacuum Ultraviolet Laser,” Astrophys. J. 693, 940-945 (2009).
  • S. A. Krasnokutski, Y. Lei, J. S. Lee, and D. –S. Yang, “Pulsed-Field Ionization Photoelectron and IR-UV Resonant Photoionization Spectroscopy of Al-Thymine,” J. Chem. Phys. 129, 124309/1-124309/9 (2008).
  • Y. Lei and D. –S. Yang, “Half-Sandwich Structure of Cyclopentadienyl Dialuminum [Al2(h5-C5H5)] from Pulsed-Field Ionization Electron Spectroscopy and Ab Initio Calculations,” J. Phys. Chem. A, 112, 1430-1435 (2008). 
  • B. R. Sohnlein, Y. Lei and D.-S. Yang, "Electronic States of Neutral and Cationic Bis(benzene)Titanium and Vanadium Sandwich Complexes Studied by Pulsed Field Ionization Electron Spectroscopy," J. Chem. Phys. 127, 114302/1-114302/10 (2007).
  • S. A. Krasnokutski and D. –S. Yang, “Pulsed Field Ionization Electron Spectroscopy and Molecular Structure of Aluminum Uracil,” J. Phys. Chem. A 111, 10567-10573 (2007).
  • X. Wang, B. R. Sohnlein, S. Li, J. F. Fuller and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy and Molecular Structures of Copper-(Pyridine)1,2,” Can. J. Chem.(Bancroft Special Issue), 85, 714-723 (2007).
  • X. Wang, J. S. Lee and D.-S. Yang, "Electron Spectroscopy, Molecular Structures, and Binding Energies of Al- and Cu-Imidazole," J. Phys. Chem. A 110, 12777-12784 (2006).
  • B. R. Sohnlein, J. F. Fuller, and D. –S. Yang, “Clamshell Structure of Sc(biphenyl) from High Resolution Photoelectron Spectroscopy,” J. Am. Chem. Soc.  128, 10692-10693 (2006).
  • X. Wang, J. S. Lee and D.-S. Yang, "Electron Spectroscopy, Molecular Structures, and Binding Energies of Al- and Cu-Imidazole," J. Phys. Chem. A 110, 12777-12784 (2006).
  • B. R. Sohnlein and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy of Group 6 Metal (Cr. Mo, and W) Bis(benzene) Sandwich Complexes,” J. Chem. Phys. 124, 134305-1/8 (2006).
  • X. Wang and D. –S. Yang, “Spectroscopy and Structures of Copper Complexes with Ethylenediamine and Methyl-Substituted Derivatives,” J. Phys. Chem. A 110, 7568-7576(2006).
  • X. Wang, J. S. Lee, and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy and Ab Initio Calculations of Copper-Diazine Complexes,” J. Chem. Phys. 125, 014309/1-9 (2006).
  • S. Li, B. R. Sohnlein, D. –S. Yang, J. Miyawaki, and K. Sugawara “Pulsed-Field Ionization Electron Spectroscopy and Conformation of Copper-Diammonia,” J. Chem. Phys., 122, 214316-1/8(2005).
  • J. Miyawaki, K. Sugawara, S. Li, and D. –S. Yang, “ZEKE Spectroscopy and Theoretical Calculations of Copper-Methylamine Complexes,” J. Phys. Chem. A, 109, 6697-6701(2005).
  • B. R. Sohnlein, S. Li, J. F. Fuller, and D. –S. Yang, “Pulsed-Field Ionization Electron Spectroscopy and Binding Energies of Alkali Metal-Dimethyl Ether and –Dimethoxyethane Complexes,” J. Chem. Phys. 123, 14318-1/7(2005).
  • B.R. Sohnlein, S. Li, and D. –S. Yang, “Electron Spin Multiplicities and Molecular Structures of Neutral and Ionic Scandium Benzene Complexes,” J. Chem. Phys. 123, 214306-1/7 (2005).

2000 - 2004

  • S. Li, J. F. Fuller, X. Wang, B. R. Sohnlein, P. Bhowmik, and D. –S. Yang, “Photoelectron Spectroscopy and Density Functional Theory of Puckered Ring Structures of Group 13 Metal-Ethylenediamine,” J. Chem. Phys. 121, 7692-7700 (2004).
  • X. Wang and D. –S. Yang, “A Hydrogen-Bond Stabilized Copper Complex: Cu-Ethylenediamine,” J. Phys. Chem. A 108, 6449-6451 (2004).
  • S. Li, J. F. Fuller, B. R. Sohnlein, G. K. Rothschopf, and D. –S. Yang, “Photoionization and Zero Electron Kinetic Energy Spectroscopy of M-P(CH3)3 and M-As(CH3)2 (M = Ga, In),” Can, J. Chem. (G. Herzberg Memorial Issue) 82, 1067-1076 (2004).
  • D.-S. Yang, "Photoelectron Spectroscopy," in Comprehensive Coordination Chemistry II:  From Biology to Nanotechnology, (J. McCleverty and T. Meyers, Editors-in-Chief), Vol. 1, Fundamentals, (A. B. P. Lever, Ed.), Elsevier:  Oxford, 2003, pp187-196
  • S. Li, G. K. Rothschopf, J. F. Fuller and D. –S. Yang, “Photoelectron and Photoionization Spectroscopy of Weakly Bound Aluminum-Methylamine Complexes,” J. Chem. Phys. 118, 8636-8644 (2003).
  • J. Miyawaki, D. –S. Yang, and K. Sugawara, “ZEKE Spectroscopy of the AgNH3 Complex,” Chem. Phys. Lett. 372, 627-631 (2003).
  • S. Li, B. R. Sohnlein, G. K. Rothschopf, J. F. Fuller and D. –S. Yang, “Pulsed-Field Ionization Zero Electron Kinetic Energy Spectroscopy and Theoretical Calculations of Copper Complexes: Cu-X(CH3)3 (X = N, P, As),” J. Chem. Phys. 119, 5406-5413 (2003).
  • S. Li, J. F. Fuller, B. R. Sohnlein and D. –S. Yang, “Zero Electron Kinetic Energy Photoelectron Spectroscopy and Density Functional Theory Calculations of Gallium-Methylamine Complexes,” J. Chem. Phys. 119, 8882-8889 (2003).
  • S. Li, G. K. Rothschopf and D. S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectroscopy and Density Functional Calculations of Al-P(CH3)3 and Al-As(CH3)3," J. Chem. Phys., 116, 6589-6594 (2002).
  • S. Li, G. K. Rothschopf and D. S. Yang, "Ionization and Dissociation Energies of Group 13 Metal Complexes with Group 15 Hydrides," J. Phys. Chem. A, 106, 6941-6944 (2002).
  • G. K. Rothschopf, S. Li and D.-S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectroscopy of Metal-Ether Complexes:  Y-O(CH3)2, Y-O(CD3)2, Y-[O(CH3)2]2, and Y-[O(CD3)2]2," J. Chem. Phys., 117, 8800-8804 (2002).
  • J. F. Fuller, S. Li, B. R. Sohnlein, G. K. Rothschopf and D.-S. Yang, "A Photoionization and Photoelectron Study of Vibrational and Electronic Cooling in Metal Molecular Beams," Chem. Phys. Lett., 366, 141-146 (2002).
  • D.-S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectra of Metal Clusters and Complexes," in Advances in Metal and Semiconductor Clusters, Vol. 5, Metal Ion Solvation and Metal-Ligand Interactions, (M. A. Duncan, Ed.), Elsevier:  Amsterdam, 2001, pp. 187-225.
  • D.-S. Yang, "Photoelectron Spectra of Metal-Containing Molecules with Resolutions Better Than 1 meV,"  Coord. Chem. Rev., 214, 187-213 (2001).
  • G. K. Rothschopf, S. Li, J. S. Perkins and D.-S. Yang, "Zero Electron Kinetic Energy Photoelectron Spectroscopy of Weakly Bound In-NH2CH3, In-NH(CH3)2, and In-N(CH3)3 Complexes," J. Chem. Phys., 115, 4565-4572 (2001).
  • S. Li, G. K. Rothschopf, D. Pillai, B. R. Sohnlein, B. M. Wilson and D.-S. Yang, "Spectroscopy and Calculations of Weakly Bound Gallium Complexes with Ammonia and Monomethylamine," J. Chem. Phys., 115, 7968-7974 (2001).
  • D. B. Pedersen, M. Z. Zgierski, S. Anderson, D. M. Rayner, B. Simard, S. Li and D.-S. Yang, "Bonding in Transition Metal-Ether Complexes:  The Spectroscopy and Reactivity of the Zr Atom-Dimethyl Ether System," J. Phys. Chem., 105, 11462-11469 (2001).
  • G. K. Rothschopf, J. S. Perkins, S. Li and D.-S. Yang, "Zero Electron Kinetic Energy Spectroscopy and Theoretical Calculations of InNH3," J. Phys. Chem. A, 104, 8178-8182 (2000).
  • D.-S. Yang and P. A. Hackett, "ZEKE Spectroscopy of Free Transition Metal Clusters,"  J. Electron Spectrosc. Relat. Phenom., 106, 153-169 (2000).
  • B. Simard, S. A. Mitchell, D. M. Rayner and D.-S. Yang, "Structures, Energetics, and Reactivity of Metal Clusters and Metal-Ligand Species in the Gas Phase," in Metal-Ligand Interactions in Chemistry, Physics, and Biology, (N. Russo and D. R. Salahub, Eds.), Kluwer:  Dordrecht, 2000, pp. 239-294.
  • A. Berces, M. Z. Zgierski and D.-S. Yang, "Study of the Electronic and Geometric Structures of Transition Metal Molecules and Cluster Compounds Using DFT Calculations and ZEKE Spectroscopy," in Computational Molecular Spectroscopy, (P. Jensen and P. R. Bunker, Eds.), John Wiley Sons:  New York, 2000, pp. 109-134.