Skip to main content


Miller and Colleagues Publish on Bifurcating Enzymes in Nature Chemical Biology

University of Kentucky researchers participating in a Department of Energy-funded center have discovered a ground-breaking process that allows them to harness energy from chemical reactions that previously would have been dismissed as unusable. The process – which maximizes the efficiency of reactions at the molecular level – could affect everything from synthetic biology to fuel and chemical production. The authors are part of a multi-institutional team called the Biological Electron Transfer and Catalysis (BETCy) Energy Frontier Research Center.

Wei Receives NSF Grant to Study Membrane Protein Oligomerization

Dr. Yinan Wei, associate professor of chemistry at the University of Kentucky, has received an award to study membrane protein oligomerizations in bilayers. This award, supported by The Chemistry of Life Processes Program in the Chemistry Division of the National Science Foundation, investigates protein-protein interactions in the cell membrane that lead to the assembly of functional protein complexes.

Graham Receives DOE CAREER Award to Study Organic-Perovskites Interfaces

Dr. Kenneth Graham, an assistant professor of chemistry at the University of Kentucky, has been selected as a recipient of a CAREER Award from the Department of Energy. This award supports the development of individual research programs of outstanding scientists early in their careers and stimulates research programs in the disciplines supported by the DOE Office of Science.

UK Chemistry Researchers Awarded National Science Foundation Grant to Build a Battery Prototype

A team of scientists at the University of Kentucky and at the Massachusetts Institute of Technology have been awarded a National Science Foundation grant to develop a prototype of a battery utilizing chemical components prepared at UK. Professors Susan Odom and John Anthony (UK Chemistry) synthesized new organic compounds as donors and acceptors for a type of battery called a redox flow battery (RFB), currently of great interest for large-scale energy storage.

UK-MRS Seminars

UK-MRS Seminars

June 12. 2017, 10:00-11:00 am

C226 OHR (Oliver H. Raymond Civil Engineering Building)


“Anode Surface Evolution in Aqueous Sodium-Ion Batteries”

Xiaowen Zhan, Department of Chemical and Materials Engineering 

Aqueous sodium-ion batteries may solve the cost and safety issues associated with the energy storage systems for the fluctuating supply of electricity based on solar and wind power. Compared to their lithium counterparts, aqueous sodium-ion batteries offer multiple advantages including more earth abundant sodium, cheaper electrode materials and electrolyte solutions as well as less costly manufacturing conditions. However, poor overall performance and low electrode utilization (much of the electrode material ends up being electrochemically inactive) are the main barriers implementing them in (micro) grid systems. Here we characterize the surface reactions on NASICON-type phosphate anode materials and rationalize their close associations with capacity fading upon slow cycling of aqueous sodium-ion batteries. The surface reactions result in the formation of an electrically insulating surface layer causing the failure of electrochemical performance and the precipitation of surface particles that blocks the pores thereby leading to poor electrode utilization. These findings provide insights into new possibilities of improving the electrochemical performance of aqueous sodium-ion batteries by designing protective layers through surface modifications that prevent the formation of insulating surface layers and insoluble precipitates. 


“Stable, High-Capacity Electrolytes for Non-Aqueous Redox Flow Batteries”

Harsha Attanayake, Department of Chemistry University of Kentucky

Redox flow batteries (RFBs) are one of the promising electrochemical devices for stationary energy storage applications due to their decoupled energy and power, long service life, and simple manufacturing. Despite advances of commercially available aqueous RFBs, they suffer from lower energy densities due to narrow electrochemical window of water (~1.5 V). Transitioning from aqueous to non-aqueous chemistry offers a wider and stable electrochemical window (>4 V), a greater selection of redox materials, a wider range of working temperatures, high cell voltage, and potentially high energy density. So far, only a limited number of highly soluble and stable organic compounds have been reported for non- aq RFBs applications as catholytes. It is crucial that the design of organic electro-active materials does not compromise any of the following characteristics: high solubility (charged and neutral states), higher oxidation potential (for electron donors), and enabling a high molecular capacity for electron donation (or acceptance). Our studies mainly focus on development of high capacity catholytes for non-aqueous redox flow batteries with stable neutral and oxidized states. This presentation will focus on molecular designing strategies to increase the solubility of phenothiazine derivatives in their charged states and neutral states, stabilization of one and two electron donation, and a new approach to raise the oxidation potential, along with their synthesis and electrochemical analysis. 




OHR C226

Guiton, Odom, and Anthony Receive NASA Kentucky Funding for Research Infrastructure Development

Two NASA Kentucky grants were awarded to support research in the Chemistry Department. Prof. Beth Guiton received funding for using single-atom resolution and in situ Imaging to determine the structure of thermoelectric materials in real-time. Profs. Susan Odom and John Anthony received funding for the development of a low temperature redox flow battery prototype for space applications.

Pillar and Guzman reveal how aromatic pollutants emitted during combustion and wood burning contribute to the formation of brown clouds

Aerosol particles suspended in the air of urban environments typically reduce visibility, interact with sunlight by scattering and absorbing radiation, and lower air quality. In addition, these tiny particles can also contribute large pollution plumes, called “brown clouds”, which have been observed to originate over South Asia in recent years and undergo long distance transport by the wind to reach other continents. The particles in brown clouds are composed by an unhealthy and variable mix including ozone and organic molecules found in smoke.

Undergraduate Student Honored by the Division of Environmental Chemistry of the American Chemical Society

In recognition of his contributions to the field of environmental chemistry Kayvon Ghayoumi is honored with the Division of Environmental Chemistry 2017 Undergraduate award from the American Chemical Society. Ghayoumi earned a B.A. in Chemistry at the University of Kentucky this Spring. His interest in Environmental Chemistry started while taking CHE 565 taught by Dr. Marcelo Guzman, who later became his research supervisor.

Chemistry Undergraduate and Graduate Students Recognized in Graduation & Awards Ceremony

At the Graduation Celebration & Student Awards Ceremony, held Friday, May 5, 2017, in the Jacobs Science Building, several undergraduate and graduate students were recognized.


Undergraduate Awards:

Freshman Chemistry Award: Jacqueline Kowalke

General Chemistry Excellence Award: Nathaniel Morgan, Grace Anderson

Hammond Leadership Award: Amir Kucharski

Hammond Undergraduate Service Award: Jumanah Mahmoud

William Meredith Riggs Award: Aaron Snell

Nancy J. Stafford Award: Sarah Gobel

Subscribe to chemistry