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Abstract Aging is the greatest risk factor for developing

neurodegenerative diseases, which are associated with

diminished neurotransmission as well as neuronal structure

and function. However, several traits seemingly evolved to

avert or delay age-related deterioration in the brain of the

longest-lived rodent, the naked mole-rat (NMR). The NMR

remarkably also exhibits negligible senescence, maintain-

ing an extended healthspan for *75 % of its life span.

Using a proteomic approach, statistically significant chan-

ges with age in expression and/or phosphorylation levels of

proteins associated with neurite outgrowth and neuro-

transmission were identified in the brain of the NMR and

include: cofilin-1; collapsin response mediator protein 2;

actin depolymerizing factor; spectrin alpha chain; septin-7;

syntaxin-binding protein 1; synapsin-2 isoform IIB; and

dynamin 1. We hypothesize that such changes may

contribute to the extended lifespan and healthspan of the

NMR.

Keywords Naked mole-rat � Proteomics �
Phosphoproteomics � Aging � Neurite outgrowth �
Neurotransmission

Introduction

The naked mole-rat (NMR) is a subterranean rodent

indigenous to the sub-Saharan region of North East Africa.

Living in large, eusocial colonies in an underground and

thermally stable ecological niche, NMRs have evolved

several remarkable traits that have made this rodent an

intriguing animal research model to investigate, some of

which include: extremely long lifespan [9], sustained

heathspan [18], negligible senescence [8], resistance to

cancer [34, 49], protein stability [45], high tolerance to

hypoxia [32] and oxidative stress [1], tightly regulated

metabolism [28], and efficient removal of cellular detritus

[64], among others [20, 33, 43, 48]. This current study

focuses on brain proteins and underlying mechanisms that

may promote neurite outgrowth and neurotransmission in

the NMR with age.

Mitochondrial dysfunction and resultant decreased ATP

production is implicated in various neuronal degenerative

diseases and leads to decreased neuroplasticity and neurite

outgrowth [13]. Specifically, in Alzheimer disease (AD),

up to 50 % of synapses, which are associated with learning

and memory, are lost throughout the brain [38]. Further in

AD, more than 50 % of neurons can become degenerative,

correlating to disease duration and severity [22]. Uncov-

ering proteins and related mechanism that prevent such

catastrophic neuronal loss may conceivably identify
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potential therapeutic targets to halt or even ameliorate

neurodegenerative damage.

Ways of making new synaptic connections in the brain

is dependent upon neurite outgrowth and neuronal

pathfinding, processes in which the neuronal outgrowth is

extended to target neurons by the growth cone. The growth

cone is a highly motile, actin-based structure located at the

tip of neuronal processes that contain lamellipodia and

filopodia projections that respond to surrounding environ-

mental cues to direct growth cone movement [15, 36].

Once the growth cone has finalized a pre-synaptic terminal

formation neurotransmitters can be repeatedly released,

triggering enlargement of axonal spines. In order to

maintain rapid neurotransmitter activity, efficient priming,

releasing and recycling of synaptic vesicles is essential.

We used a proteomic and phosphoproteomic approach

in the brain of NMRs of various ages to assess if subtle

changes in the proteome may be occurring and if these

changes could play a key role in averting the age-related

decline in brain function commonly observed in other

mammals. In this comprehensive study, we identified

several significant changes in the NMR brain proteome and

phosphoproteome with age. Previously, we have reported

on changes of metabolic proteins [57, 58] and on proteins

associated with the proteostasis network [57, 58] with age

in the NMR. In this report, we describe significant changes

with age in neuroplastic-related brain proteins and phos-

phoproteins in the NMR and their contribution to under-

lying mechanisms that may contribute to the unusually

long and salubrious lifespan of this rodent.

Materials and Methods

Materials

All chemicals used in this study were purchased from

Sigma-Aldrich (St. Louis, MO, USA) unless otherwise

noted. Criterion precast polyacrylamide gels, ReadyStrip

IPG strips, TGS and MOPS electrophoresis running buf-

fers, mineral oil, Precision Plus Protein All Blue Standards,

SYPRO Ruby protein stain, biolytes, urea, dithiothreitol

(DTT), iodoacetamide (IA), and nitrocellulose membranes

were purchased from Bio-Rad (Hercules, CA, USA). Pro-Q

Diamond phosphoprotein gel stain, anti-phosphoserine,

anti-phosphothreonine, and anti-phosphotyrosine antibod-

ies were purchased from Invitrogen (Grand Island, NY,

USA). Protein A/G beads Amersham ECL IgG horseradish

peroxidase-linked secondary antibodies, and ECL Plus

Western blotting detection reagents were procured from

GE Healthcare (Pittsburgh, PA, USA). C18 ZipTips and Re-

Blot Plus Strong stripping solution were obtained from

Millipore (Billerica, MA, USA). Modified trypsin solution

was purchased from Promega (Madison, WI, USA). Pierce

BCA protein assay reagents A & B were purchased from

Thermo Scientific (Waltham, MA, USA). Anti-septin7,

anti-CRMP2 and anti-cofilin1 antibodies were purchased

from Santa Cruz Biotechnology (Dallas, TX, USA).

Animals

Brains from NMRs, aged 2–24 years, were acquired from

the well-characterized colonies [7] of Dr. Rochelle Buf-

fenstein at the University of Texas Health Science Center,

San Antonio. The fabricated burrow systems, which housed

the NMRs, mimicked conditions of their natural habitat and

were maintained at 30 �C with 30–50 % relative humidity.

The NMR diet consisted of fresh fruits and vegetables (fed

ad libitum), supplemented with a high protein and vitamin

enriched feed (Pronutro, South Africa). NMRs of different

ages were anesthetized with isoflurane and euthanized by

cardiac exsanguination. Brains were immediately harvested

and flash frozen in liquid nitrogen. All animal procedures

were approved by the Institutional Animal Care and Use

Committee at the University of Texas Health Science

Center at San Antonio, TX. Experimental animal groups

consisted of 5–9 individual brains from both male and

female individuals of both subordinate and breeding status.

NMRs were divided into the following four age groups for

analysis: 2–3 year-olds (age group 1; young), 4–6 year-

olds (age group 2; intermediate), 7–12 year-olds (age

group 3; old) and 15–24 year-olds (age group 4; oldest).

Sample Preparation

NMR brains were homogenized using a Wheaton glass

homogenizer (*40 passes) with ice-cold isolation buffer

[0.32 M sucrose, 2 mM EDTA, 2 mM EGTA, 20 mM

HEPES, 0.2 lg/mL PMSF, 5 lg/mL aprotinin, 4 lg/mL

leupeptin, 4 lg/mL pepstatin, and 10 lg/mL phosphatase

inhibitor cocktail 2] and sonicated for 10 s on ice. Protein

concentrations of homogenates were determined by the

Pierce BCA method (Rockford, IL, USA) [51].

Two-Dimensional Polyacrylamide Gel

Electrophoresis (2-D PAGE)

Isoelectric Focusing (IEF)

2-D PAGE experiments were performed as previously

described [53]. Briefly, 200 lg of each sample was sus-

pended in 200 lL of rehydration buffer [8 M urea, 2 M

thiourea, 50 mM DTT, 2.0 % (w/v) CHAPS, 0.2 % Bio-

lytes, 0.01 % bromophenol Blue], applied to IPG strips (pH

3–10), actively rehydrated and isoelectrically focused.
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After completion of the run, IPG strips were immediately

stored at -80 �C.

SDS PAGE

IPG strips were thawed and equilibrated in DTT and IA-

containing buffers. Strips were rinsed in Tris/Glycine/SDS

(TGS) running buffer and placed into Criterion precast

polyacrylamide gels (8–16 % Tris–HCl). Precision Plus

Protein All Blue molecular standards and samples were run

at a constant voltage of 200 V for approximately 65 min at

22 �C in TGS running buffer.

SYPRO Ruby and Pro-Q Diamond Staining

After completion of 2D-PAGE, gels were stained accord-

ing to manufacturer’s directions and as described previ-

ously (16). In brief, gels were fixed [10 % (v/v) acetic acid,

50 % (v/v) methanol] and stained with 60 mL of Pro-Q

Diamond for exactly 90 min. Gels were destained four

times by destaining solution [20 % acetonitrile (ACN),

50 mM sodium acetate, pH 4] (100 mL, 30 min each). The

gels were scanned at 580 nm using ChemiDoc XRS?

imaging system (Bio-Rad). Next, gels were incubated

overnight (15 h) in 50 mL of SYPRO Ruby protein gel

stain. Gels were imaged at 450 nm and stored in DI water

in covered containers at 4 �C until protein spot extraction.

Image Analysis

Expression Proteomics

Spot intensities from SYPRO Ruby-stained gel images

were quantified according to total spot density and nor-

malized to total gel density using PDQuest analysis soft-

ware (Bio-Rad). Normalized spot densities of the four age

groups were compared and only spots with statistically

significant differences between the age groups (p\ 0.05)

were considered for in-gel trypsin digestion and protein

identification by MS/MS.

Phosphoproteomics

Spot intensities from Pro-Q Diamond-stained gel images

were quantified and matched as described previously (16).

A high match analysis between the SYPRO Ruby and Pro-

Q Diamond-stained gels was conducted. Phosphoprotein

spot densities were normalized to SYPRO Ruby spot

densities in order to differentiate between a lightly phos-

phorylated protein that is highly abundant and a protein of

low abundance that is highly phosphorylated. The nor-

malized spot densities were compared between the four age

groups, and spots that were statistically significant

(p\ 0.05) were considered for in-gel trypsin digestion and

protein identification by MS/MS.

In-Gel Trypsin Digestion/Peptide Extraction

Significantly differential protein spots were excised from

2D-gels and transferred to individual Eppendorf micro-

centrifuge tubes for trypsin digestion as previously

described [55]. In brief, DTT and IA were used to break

and cap disulfide bonds and the excised gel plugs were

incubated overnight (17 h) in modified trypsin solution

with shaking at 37 �C. Salts and contaminants were

removed from the tryptic peptide solutions using C18

ZipTips. Tryptic peptide solutions were reconstituted in

10 lL of a 5 % ACN/0.1 % formic acid (FA) solution and

stored at -80 �C until MS/MS analysis.

NanoLC-MS with Data Dependent Scan

Reconstituted tryptic peptide solutions were analyzed by a

nanoAcquity (Waters, Milford, MA)-LTQ Orbitrap XL

(Thermo Scientific, San Jose, CA) platform using a data

dependent scan mode and separated by a capillary column

(0.1 9 130 mm column packed in-house with 3.6 lm,

200 Å XB-C18) with a gradient using 0.1 % FA and ACN/

0.1 % FA at 200 nL/min. Spectra obtained by MS were

measured by the orbitrap at 30,000 resolution; and the MS/

MS spectra of the six most intense parent ions were

acquired by the orbitrap at 7500 resolution. Swiss-Prot

database by SEQUEST (Proteome Discoverer v1.4,

Thermo Scientific) was used to interrogate the data files for

sample identification. Proteins were identified by at least

two high-confidence peptide matched sequences with a

false discovery rate\1 %. Proteins matched with the same

peptides were reported as one protein group. Tabular data

reported from these analyses includes: the SwissProt

accession number, the percentage of the protein sequence

identified by matching peptides, the number of peptide

sequences sequenced in the MS/MS analysis, the confi-

dence score of the protein, the protein’s expected molec-

ular weight (MW) and isoelectric point (pI).

Immunoprecipitation and Western Blotting

Immunoprecipitation (IP)

Brain homogenates (250 lg) were suspended individually

in 500 lL of IP buffer [0.05 % NP-40, aproprotin 5 lg/
mL, leupeptin 4 lg/mL, pepstatin 4 lg/mL, and phos-

phatase inhibitor cocktail 10 lg/mL] in a phosphate buffer

solution, pH 8 [8 M NaCl, 0.2 M KCl, 1.44 M Na2HPO4,

and 0.24 M KH2PO4]. Samples were incubated with Pro-

tein A/G agarose beads in 500 mL of IP buffer for 1.5 h at

Neurochem Res (2016) 41:1625–1634 1627

123



4 �C. Each sample was incubated overnight with anti-

cofilin1 antibody (1:50 dilution) at 4 �C. The next day,

samples were incubated with Protein A/G agarose beads for

1.5 h at 4 �C and washed with IP buffer (500 mL, 5 times),

preserving the protein-linked beads for a 1D-PAGE

experiment.

One-Dimensional Polyacrylamide Gel Electrophoresis

(1D-PAGE)

Sample homogenates (50 lg) or beads from immunopre-

cipitation were suspended in 4X sample loading buffer

[0.5 M Tris, pH 6.8, 40 % glycerol, 8 % SDS, 20 % b-
mercaptoethanol, 0.01 % Bromophenol Blue] (diluted to

1X with DI water). Samples were heated at 95 �C for

5 min, cooled on ice and loaded into Criterion precast 18

well polyacrylamide gels (4–12 % Bis–Tris). Using MOPS

running buffer, gels were run at 80 V for 15 min and then

at 120 V for approximately 100 min.

1D-Western Blotting

In-gel proteins were transferred to nitrocellulose mem-

branes (0.2 nm) using a Trans-Blot Turbo Blotting System

(Bio-Rad) at 25 V for 30 min. Membranes were blocked in

solution [3 % bovine serum albumin (BSA) in TBS-T (8 M

NaCl, 2.4 M Tris, and 0.1 % (v/v) Tween 20)] for 1.5 h.

The membranes were then separately incubated with pri-

mary antibodies: CRMP2 and septin7 (1:3000 dilution),

tubulin (1:5000), and phosphoserine, phosphothreonine and

phosphotyrosine antibodies (1:6000) for 2 h. The blots

were washed with TBS-T (3 times, 5 min each), incubated

(1 h) with a horseradish peroxidase secondary antibody in

TBS-T (1:5000), and washed again in TBS-T (3 times,

10 min each). Western blots were developed using

chemiluminesence (in dark, 5 min) with Clarity Western

ECL substrate, scanned with the ChemiDoc and quantified

using Image Lab software (Bio-Rad). Blots were stripped

up to two times with Re-Blot Plus Strong solution (15 min

each) for further probing.

Statistical Analysis

An initial conservative analysis was carried out on

PDQuest data using both a two-tailed Student’s t test and a

Mann–Whitney U statistical test, independently comparing

each age group to the youngest age group. Protein spots

were considered significant if p\ 0.05 in both tests. Sig-

nificant differences (p\ 0.05) between the age groups for

PDQuest data were determined using one-way ANOVA

with post hoc Bonferroni correction analyses. Fold-change

values of proteins were calculated by dividing the average,

normalized spot intensity of older age group by the aver-

age, normalized spot intensity of the younger age group in

the comparison. For Western blot data, a one-way ANOVA

with a post hoc Tukey multiple comparisons test was

conducted using GraphPad Prism (version 6.02). All data

are presented as mean ? SEM. Proteins identified by the

SEQUEST search algorithm were considered statistically

significant if p\ 0.01. At least two peptide sequences were

used to identify each protein and a visual comparison was

made between the expected MW and pI of the identified

protein to the spot of the extracted 2-D gel plug.

Results

Age-Related Changes in Neuroplasticity-Related

Proteins

Neuroplasticity-related proteins with statistically signifi-

cant alterations in protein and/or phosphorylation levels in

the four age cohorts are labeled in the 2-D gel images of

Figs. 1 and 2. PDQuest analyses of gels from all age groups

identified 9 proteins related to neurite outgrowth and neu-

rotransmission with significant changes in the NMR brain

as a function of age (Table 1). These proteins were: cofilin-

1; isoform 2 of dihydropyrimidinase-related protein 2, aka

collapsin response mediator protein 2; destrin, aka actin

depolymerizing factor; isoform 3 of spectrin alpha chain;

septin-7; syntaxin-binding protein 1; synapsin-2 isoform

IIB; and both isoform 3 and 4 of dynamin1.

Immunoprecipitation and Western Blotting

Validations

Immunoprecipitation and Western blot experiments were

carried out on selected proteins to confirm MS/MS results

and provides confidence of all proteomic or phosphopro-

teomic identifications. Western blot analysis of CRMP2

(Fig. 3a) confirmed a significant increase in CRMP2 levels

in the brain of the oldest age group compared to the two

younger age groups (p = 0.008) and (p = 0.011), respec-

tively. The results of the Western blot analyses of the levels

of septin-7 (Fig. 3b) verified a significant increase in the

old age group (p = 0.038) compared to the youngest age

group, while also showing increased levels of septin-7 in

the intermediate age group (p = 0.034) also compared to

the youngest age group. Analyses of the immunoprecipi-

tation of cofilin-1 with anti-phosphoserine, anti-phospho-

threonine and anti-phosphotyrosine antibodies confirmed a

significant decrease in the phosphorylation of cofilin-1 in

the brain of the NMR for the intermediate age group

(p = 0.039), old age group (p = 0.037), and oldest age
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group (p = 0.037) all relative to the youngest age group

(Fig. 3c).

Discussion

Evaluation of the proteins and phosphoproteins that sig-

nificantly change with age in the brain of the NMR, whose

functions are associated with neuroplasticity, fall into two

distinct yet connected processes: neurite outgrowth and

neurotransmission.

Neurite Outgrowth

Rapid assembly and disassembly of the actin cytoskeleton

at the leading edge of the cone is required for motility of

the growth cone [35, 41]. Actin depolymerizing factor

(ADF; destrin) and cofilin-1, members of the ADF/cofilin

family, modulate actin dynamics in the growth cone by

binding and depolymerizing F-actin [25, 31] and by regu-

lating the rate at which these monomers separate from the

actin filament (Maciver and Hussey [37]. In the current

study, NMRs exhibited increased ADF/cofilin-1 levels with

significant elevation of ADF levels in the two oldest age

cohorts compared to the youngest age group and increased

cofilin-1 levels in the old age group. The increase in the

expressed levels of these two proteins with age in the NMR

brain is an interesting finding as overexpression of cofilin

has been reported to increase neurite outgrowth [40] and

neurite extension by the growth cone [19]. Further, phos-

phorylation of ADF was decreased in the oldest age group,

while cofilin-1 phosphorylation was decreased in all age

groups as compared to the youngest. Phosphorylation is an

important regulatory mechanism as phosphorylation at Ser-

3 reportedly inactivates ADF/cofilin, while dephosphory-

lation activates actin depolymerization Toshima [19, 56].

Moreover, it has been reported that an increased F-actin

turnover rate stimulates longevity, while a decreased rate

may trigger cell death [24]. Taken together, the increased

levels and activity of ADF/cofilin suggest a possible con-

tributing factor promoting the increase in dendrite length

and complexity that is reported to occur with age in the

NMR [44].

Collapsin response mediator protein 2 (CRMP2) is a

pleiotropic protein involved in regulating growth cone

dynamics (e.g., organization of the dendritic field, guidance

and collapse of the growth cone, neurite outgrowth) as well

as synaptic assembly, neurotransmitter release, endocytosis,

Fig. 1 Representative Sypro Ruby-stained 2-D gel images of isolated

proteins from the brains of NMRs, aged 2–3 years (a), 4–6 years (b),
7–12 years (c), and 15–24 years (d). Proteins whose expression and/

or phosphorylation state was significantly altered (p\ 0.05) in the

particular age group are labeled in the images
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and Ca2? homeostasis [5, 10, 23, 27, 29, 59]. In previous

studies, we have shown that CRMP2 is oxidatively modified

in brain of subjects with AD [11] and that phosphorylation

levels of CRMP2 are increased in the hippocampus of brains

from AD brain [17]. Further, it has been shown that CRMP2

levels decrease in the central nervous system as we age [12].

Conversely, in this current study, levels of CRMP2 were

significantly increased in the oldest NMRs compared to both

the intermediate and old age groups. This increase in

CRMP2 suggests that older NMR brains have increased

neuronal plasticity and provides another mechanism by

which the NMR is able to ward away cognitive decline with

age.

We found evidence for the differential regulation of

another family of neuroplasticity-related proteins in NMR

brains, the septins. Members of the septin family are highly

conserved cytoskeletal GTPases involved in various cel-

lular functions, including: dendritic field maturation, spine

dynamics, synaptic transmission, vesicle trafficking, DNA

response to cytoskeletal damage, protein scaffolding,

membrane compartmentalization, cell division, and apop-

tosis [4], Kremer et al. [26, 30, 52, 54, 60]. Septin7, in

particular, is reportedly essential in the regulation of den-

dritic branching and spine morphology [60]. In this study

of the NMR brain, expression of septin7 was significantly

increased in the old age group with respect to the youngest

age group. The increase in structural plasticity, as noted by

others [44] and as supported by the increase in expression

and/or activity in the above identified proteins, provides a

neuronal correlation to a plausible mechanism promoting

longevity in the NMR.

Neurotransmission

Rapid release and recycling of synaptic vesicles is one

facet required for efficient neurotransmission. In the brain

of the NMR, four proteins involved in this process were

altered with age: syntaxin-binding protein 1 (stxbp1), two

isoforms of dynamin-1 (dnm1), and spectrin.

Stxbp1 plays a role in both neurite extension and neu-

rotransmission. Not only is stxbp1 reported to regulate the

filopodia of the growth cone to modulate plasticity [6], but

stxbp1 also can bind to syntaxin and modulate the forma-

tion of the SNARE complex and subsequent neurotrans-

mitter release [42, 62]. In the current study, the expression

of stxbp1 was increased in the oldest age group compared

to the youngest, and phosphorylation levels of stxbp1 were

decreased in the two oldest groups relative to the youngest.

Fig. 2 Representative Pro-Q Diamond-stained 2-D gel images of

isolated proteins from the brains of NMRs, aged 2–3 years (a),
4–6 years (b), 7–12 years (c), and 15–24 years (d). Proteins with

significantly altered phosphorylation levels (p\ 0.05) in the partic-

ular age group are labeled in the images
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Protein kinase C phosphorylation on Ser-306 and Ser-313

of stxbp1 reportedly modulates neurotransmission by

increasing rapid vesicle cycling and vesicle release (Bar-

clay et al. [3, 14]. However, since PhosphoSite lists over 30

residues of stxbp1 that can be phosphorylated, it is con-

ceivable that the global phosphorylation events measured

here may be responsible for modulation of other cellular

activities, such as changing affinity to binding partners or

cellular localization or other activities. Furthermore, based

on the NMR’s reputation for maintaining a long healthspan

as well as the implications of other proteins identified in

this study, it may not be likely that the decreased phos-

phorylation of stxbp1 seen here would decrease synaptic

activity. Further investigations into decreases of phospho-

rylation at particular phosphorylation sites are warranted.

Dnm1 is a brain-specific GTP-dependent motor protein

that is abundant in the post-synaptic synapse [47]. Fur-

thermore, Dnm1 phosphorylation plays a key role in

regulating synaptic vesicle endocytosis (reviewed in

Smillie and Cousin [50]). Dnm1 is activated by the

dephosphorylation that occurs upon depolarization of the

axon terminal, and then is deactivated by phosphorylation

upon repolarization. We speculate that upregulation of the

activity of this protein observed in the current study among

the oldest age group compared to the youngest age group

may be the result of the brain’s defensive mechanism to

ameliorate reduced neurotransmission, which normally

occurs as we age (McGeer and McGeer [39], by increasing

the uptake of excitatory neurotransmitters into the post-

synaptic synapse.

Spectrin is an a-b heterodimer that makes up to 2–3 %

of all proteins in the brain and is responsible for cross-

linking F-actin, membrane lipids, and proteins to form a

resilient 3-D cellular matrix to increase the stability of the

cytoskeleton and transmembrane proteins [2, 61, 63].

Spectrin is found at greater concentrations at the

Table 1 PDQuest and MS/MS results of NMR brain proteins related to plasticity, structure and neurotransmission with significant altered

expression and/or phosphorylation states as a function of age

Spot Protein

identified

Accession

#

Coverage

(%)

# of

Peptides

Score MW

(kDa)

pI Age

groups

p value

expression

Fold

change

expression

p value

phosphory-

lation

Fold

change

phosphory-

lation

8004 Cofilin-1 P23528 43.37 7 29.67 18.5 8.09 1 v 2 0.0398 6.46 0.0001 0.0082

1 v 3 0.0103 7.48 0.0001 0.0059

1 v 4 – – 0.0005 0.166

4710 Collapsin

response

mediated

protein 2,

Isoform 2

Q16555–2 24.25 9 61.28 58.1 6.15 2 v 4 0.0387 2.98 – –

3 v 4 0.0160 3.93 – –

8002 Destrin F6RFD5 21.48 3 18.75 15.4 8.59 1 v 3 0.0371 63.3 – –

1 v 4 – – 0.0466 0.172

2907 Spectrin

alpha

chain,

Isoform 3

Q13813–3 8.77 19 89.26 282 5.34 1 v 3 0.0330 6.60 0.0003 0.121

1 v 4 – – 0.0004 0.180

8502 Septin-7 H0Y3Y4 9.65 3 3.91 43.0 7.78 1 v 3 0.0381 17.2 – –

6704 Syntaxin-

binding

protein 1

P61764 26.43 13 66.50 67.5 6.96 1 v 3 0.0159 6.63 0.0339 0.0203

1 v 4 – – 0.0277 0.125

6506 Synapsin-2,

Isoform

IIB

Q92777–2 16.95 8 50.75 52.1 7.72 1 v 3 0.0498 44.8 – –

6803 Dynamin1

Isoform3

Q05193–3 14.62 13 53.89 96.0 7.01 1 v 3 – – 0.0372 0.104

5802 Dynamin1

Isoform 4

Q05193–4 26.87 25 116.9 96.3 7.17 1 v 3 – – 0.0046 0.317

1 v 4 – – 0.0014 0.246

Significance was determined via one-way ANOVA with post hoc Bonferroni correction analysis. *Comparison is of the older age group to the

younger age group. Age group 1 consists of 2–3 year-olds, 2 has 4–6 year-olds, 3 has 7–12 year-olds, and 4 has 15–24 year-olds (n = 4–6 for

each age group)
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presynaptic membrane and is thought play a role in

synaptic transmission and organization, since spectrin

mutations in Drosophila led to disrupted neurotransmission

and aberrant synaptic protein localization [21]. Previously,

we reported decreased expression of alpha-spectrin in the

aged SAMP8 mouse brain [46]. Conversely, in the current

study, expression of spectrin a-chain, isoform 3 is

increased in the brain of old-aged NMRs relative to the

youngest, suggesting a potential link to efficient neuro-

transmission in aged NMRs. In addition, the phosphory-

lation level of this protein is decreased in the brains of the

two oldest NMR groups. Spectrin is known to be phos-

phorylated at numerous residues; however, the conse-

quences of spectrin phosphorylation are not yet clear [2].

In summary, the NMR, with its many unique traits associ-

ated with salubrious aging, is an exceptional model organism

in the study of proteins to target for therapeutic interventions in

the aging process. The findings of the current age-related study

of brains from NMRs identifies changes in protein expression

and/or phosphorylation levels of key proteins involved in

mechanisms that may be responsible for the increase in neu-

ronal plasticity and the lack of senescence noted in the NMR.

Future Directions

Uncovering clues to the underlying mechanisms that pro-

mote successful aging in long-lived species may provide

novel insights into the aging process and resistance to age-

associated diseases. Further investigations into these pro-

teomics-identified proteins in this current study may be

warranted to identify targets for potential key therapies that

conceivably may aid in delaying the onset and progression

of aging in humans.
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