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The naked mole-rat (NMR) is the longest-lived rodent and possesses several exceptional traits: marked cancer
resistance, negligible senescence, prolonged genomic integrity, pronounced proteostasis, and a sustained health
span. The underlying molecular mechanisms that contribute to these extraordinary attributes are currently
under investigation to gain insights that may conceivably promote and extend human health span and lifespan.
The ubiquitin–proteasome and autophagy–lysosomal systems play a vital role in eliminating cellular detritus to
maintain proteostasis and have beenpreviously shown to bemore robust inNMRswhen comparedwith shorter-
lived rodents. Using a 2-D PAGE proteomics approach, differential expression and phosphorylation levels of pro-
teins involved in proteostasis networks were evaluated in the brains of NMRs in an age-dependent manner. We
identified 9 proteins with significantly altered levels and/or phosphorylation states that have key roles involved
in proteostasis networks. To further investigate the possible role that autophagymay play inmaintaining cellular
proteostasis, we examined aspects of the PI3K/Akt/mammalian target of rapamycin (mTOR) axis aswell as levels
of Beclin-1, LC3-I, and LC3-II in the brain of the NMR as a function of age. Together, these results show that NMRs
maintain high levels of autophagy throughout themajority of their lifespan andmay contribute to the extraordi-
nary health span of these rodents. The potential of augmenting human health span via activating the proteostasis
network will require further studies.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The bathyergid rodent, Heterocephalus glaber, more commonly
known as the naked mole-rat (NMR) or sand puppy, is a strictly
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subterranean rodent indigenous to North East Africa. Phylogeneti-
cally, these rodents are closely related to the guinea pig (Cavia
porcellus); although comparative studies with NMRs often include
other closely related rodents such as mice and rats [1,2]. NMRs
are arguably best known because of their unusually long, healthy
life spans (15–30 years) when compared with those of the tradi-
tional rodent models including mice and rats (1–3 years) [3–6].
This prolonged health span has led to research involving many cel-
lular systems thought to contribute to the aging process including:
oxidative stress or damage of biomolecules (i.e., proteins and
nucleotides), mitochondrial dysfunction, and the autophagy/
proteostasis network [7–11]. The ability of the NMR to withstand
the chronic insult of protein unfolding stressors has been attribut-
ed to the efficiency with which the rodent maintains the integrity
of its proteome by way of a high functioning proteostasis network
[12–16]. The proteostasis network is a network of mechanisms in
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place to prevent and eliminate protein misfolding, and promotes
degradation of unwanted and damaged organelles and proteins.
This network contains the ubiquitin–proteasome system (UPS)
and cellular autophagy, among others.

TheUPS functions tomaintain cellular proteostasis by degrading un-
wanted,misfolded or damaged proteins that could otherwise aggregate
into potentially cytotoxicmoieties, andUPS dysfunction has been impli-
cated in multiple neurodegenerative disorders [17–21]. The protea-
some cleaves damaged proteins into smaller peptide fragments by the
proteolytic center that contains trypsin-like (T-L), post-glutamyl
peptide-hydrolyzing (PGPH), and chymotrypsin-like (ChT-L) specific-
ities [22,23]. Liver and brain samples from NMRs when compared
with mouse controls, have shown increased ChT-L and T-L activities,
suggesting a more efficient UPS that may contribute to their inherent
resistance to aging and age-related diseases [8,14]. Moreover, human,
mouse, and yeast proteasomeswere demonstrated to have an increased
activity when exposed to proteasome depleted cytosolic fractions con-
taining a novel heat shock protein (HSP)-containing complex from
NMR samples [23].

The autophagy–lysosomal pathway (ALP) is an evolutionarily
conserved catabolic process by which the cell removes and recycles
complexes, protein aggregates and damaged organelles [24]. Often
observed as a mechanism to address starvation and reduce energy
output, autophagy can also contribute to cellular differentiation,
growth control, defense from xenobiotics, as well as general house-
keeping and maintenance [25]. Thus, autophagy is generally thought
of as a survival mechanism. ALP involves a number of proteins such
as Beclin-1 and LC3 that are crucial in the initiation and recruitment
of the autophagosome, which once formed, engulfs the target prior
to fusing with the lysosome for recycling [26]. Further, the PI3K/
Akt/mTOR axis plays a central role in cellular proteostasis as mTOR
activation inhibits autophagy, and mTOR is a direct target of the ki-
nase Akt, which is regulated by PI3K. Dysregulation of these path-
ways has been linked to neurodegenerative diseases [27–33].

A failing proteostasis network in the brain in particular increases
vulnerability to dysfunctions in UPS and ALP due to the unique shape
of neurons and their non-mitotic nature [34]. Further, these protein
degradation mechanisms are essential in neuron function including
neurotransmission and synaptic remodeling [35,36]. Dysregulation of
these proteostasismaintenance systems can lead to neurodegeneration,
diminished quality of life and reduced lifespan [37].

In the current age-related study of the NMR proteome and
phosphoproteome, a large number of significantly altered brain
proteins were identified, whose functions were related to metabolism,
proteostasis networks, cellular signaling, structure, and neuronal plas-
ticity. Too many proteins were identified to be efficiently discussed
and expounded upon in a singlemanuscript; consequently, we facilitat-
ed discussion of the results by means of protein functionality. Here, we
report on significant changes in proteins related to proteostasis and au-
tophagy systems in the NMR brain and their impact upon the unusually
long and salubrious lifespan of the NMR.

2. Materials and methods

2.1. Materials

Criterion precast polyacrylamide gels, TGS and MOPS electrophore-
sis running buffers, ReadyStrip IPG strips, mineral oil, Precision Plus
Protein All Blue Standards, Sypro Ruby protein stain, biolytes, urea,
dithiothreitol (DTT), iodoacetamide (IA), and nitrocellulosemembranes
were purchased from Bio-Rad (Hercules, CA, USA). Pro-Q Diamond
phosphoprotein stain, anti-phosphotyrosine, anti-phosphoserine, and
anti-phosphothreonine antibodies were procured from Invitrogen
(Grand Island, NY, USA). Protein A/G beads Amersham ECL IgG horse-
radish peroxidase-linked secondary antibodies, and ECL Plus Western
blotting detection reagents were purchased from GE Healthcare
(Pittsburgh, PA, USA). C18 ZipTips and ReBlot Plus Strong stripping
solution were obtained fromMillipore (Billerica, MA, USA). Modified
trypsin solution was purchased from Promega (Madison, WI, USA).
Pierce BCA protein assay reagents A and Bwere purchased from Ther-
mo Scientific (Waltham, MA, USA). Anti-p-PI3K (Tyr508) (sc-12929) and
anti-BAP1 (Ub carboxyl-terminal hydrolase) (sc-28236) antibodies
were purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Anti-
Beclin-1 (3738), anti-p-mTOR (Ser2448) (5536-S), anti-mTOR (2983-S),
anti-AKT (4685-S), and anti-p-AKT (Ser473) (4058-S) antibodieswere ob-
tained fromCell Signaling Technology (Danvers,MA,USA). Anti-LC3-I and
anti-LC3-II antibodies (NB100-2220) were purchased fromNovus (Little-
ton, CO, USA). Anti-VDAC2 antibody (ab118872) was purchased from
Abcam (Cambridge, MA, USA). All other chemicals used in this study
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Animals

Brains from NMRs were obtained from well-characterized colonies
[3] maintained by Dr. Rochelle Buffenstein at the University of Texas
Health Science Center, San Antonio. The NMRs were housed in fabricat-
ed burrow systems under climate conditions that mimicked their natu-
ral habitat (30 °C and 30–50% relative humidity). The NMRswere fed ad
libitum a diet that consisted of fresh fruits and vegetables, which was
supplementedwith a high protein and vitamin enriched feed (Pronutro,
South Africa). NMRs were anesthetized with isofluorane, euthanized by
cardiac exsanguination and the brainswere immediately harvested and
flash frozen in liquid nitrogen. All animal procedures were approved by
the Institutional Animal Care and Use Committee at the University of
Texas Health Science Center at San Antonio, TX. Experimental animal
groups consisted of 5–9 individual brains from both male and female
individuals and of both subordinate and breeding status. NMRs were
divided into four age groups for analysis: 2–3 year-olds (age group 1;
young; n=6; 3males/3 females), 4–6 year-olds (age group 2; interme-
diate; n= 7; 3males/4 females), 7–12 year-olds (age group 3; old; n=
7; 4 males/3 females) and 15–24 year-olds (age group 4; oldest; n= 9;
4 males/5 females).

2.3. Sample preparation

Naked mole-rat whole brain homogenates were prepared using
a Wheaton glass homogenizer (~40 passes) and diluted with ice-
cold isolation buffer [0.32 M sucrose, 2 mM EDTA, 2 mM EGTA,
20 mM HEPES, 0.2 μg/mL PMSF, 5 μg/mL aprotinin, 4 μg/mL
leupeptin, 4 μg/mL pepstatin, and 10 μg/mL phosphatase inhibitor
cocktail 2]. Homogenate protein concentrations were ascertained
by the Pierce BCA method (Rockford, IL, USA) [38].

2.4. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE)

2.4.1. Isoelectric focusing (IEF)
2-D PAGE experiments were performed as previously described

[39]. In brief, 200 μg of each homogenate, suspended in 200 μL of
rehydration buffer [8 M urea, 2 M thiourea, 50 mM DTT, 2.0% (w/v)
CHAPS, 0.2% Biolytes, 0.01% bromophenol Blue], was sonicated and
applied to 11 cm pH 3–10 ReadyStrip IPG strips. The strips were
actively rehydrated and isoelectrically focused. At the end of the
run, IPG strips were immediately stored at −80 °C.

2.4.2. SDS PAGE
IEF strips were thawed and equilibrated in DTT and IA-containing

buffers. IEF strips were rinsed in a TGS running buffer before placement
into 11 cmCriterion precast linear gradient polyacrylamide gels (8–16%
Tris–HCl). Precision Plus Protein All Blue molecular standards and
samples were run at a constant voltage of 200 V for approximately
65 min at 22 °C in Tris/Glycine/SDS running buffer.
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2.5. Sypro Ruby and Pro-Q Diamond staining

After 2-D-PAGE, gel staining was carried out according to
manufacturer's directions and as described previously [40]. Briefly,
gels were incubated in 50 mL of fixing solution [10% (v/v) acetic acid,
50% (v/v) methanol], washed in deionized (DI) water, and stained
with 60 mL of Pro-Q Diamond for 90 min. Gels were then destained
four times in 100mL of solution [20% acetonitrile (ACN), 50mMsodium
acetate, pH 4] for 30 min each. The gels were washed three times in DI
water (30 min each) and then scanned at 580 nm using a Bio-Rad
ChemiDoc XRS+ imaging system (Bio-Rad, Hercules, CA, USA). Next,
50 mL of Sypro Ruby protein gel stain was added and allowed to incu-
bate overnight (15 h). Gels were then rinsed in DI water, scanned at
450 nm with the ChemiDoc imager, and stored in DI water at 4 °C
until protein spot extraction.

2.6. Image analysis

2.6.1. Expression proteomics
Spot intensities from SYPRO Ruby-stained 2-D-gel images of NMR

brain samples were quantified according to the total spot density
using PDQuest 2-D Analysis Software (Bio-Rd, Hercules, CA, USA).
Intensities of individual spots were normalized to the total gel densi-
ties. Normalized spot densities of the four age groups (2–3 year-olds,
4–6 year-olds, 7–12 year-olds, and 15–24 year-olds) were compared.
Only spots with statistically significant differences (p b 0.05) were
considered for in-gel trypsin digestion and protein identification by
MS/MS.

2.6.2. Phosphoproteomics
Protein spots from Pro-Q Diamond-stained 2-D-gel images of the

NMR brain samples were quantified and matched as described
Fig. 1. Representative Sypro Ruby-stained 2-D gel images of isolated proteins from the brains o
whose expression and/or phosphorylation state were significantly altered (p b 0.05) in the par
previously [40]. Next, a high match analysis between the master
gels from the Sypro Ruby matching and Pro-Q Diamond matching
was conducted. The phosphoprotein spot densities were normalized
to the Sypro Ruby spot densities and the resultant normalized spot
densities in four age groups were compared and spots that were sta-
tistically significant (p b 0.05) were considered for in-gel trypsin
digestion and protein identification by MS/MS.

2.7. In-gel trypsin digestion/peptide extraction

Protein spots identify as significantly altered from the earliest age
group were excised from 2-D-gels and transferred to individual
Eppendorf microcentrifuge tubes for trypsin digestion as described
previously [41]. In brief, DTT and IAwere used to break and cap disul-
fide bonds and the gel plug was incubated overnight at 37 °C with
shaking in a modified trypsin solution. Salts and contaminants
were removed from the tryptic peptide solutions using C18 ZipTips.
Tryptic peptide solutions were reconstituted in 10 μL of a 5% ACN/
0.1% formic acid (FA) solution and stored at −80 °C until MS/MS
analysis.

2.8. NanoLC–MS with data dependent scan

Tryptic peptide solutions were analyzed by a nanoAcquity
(Waters, Milford, MA)-LTQ Orbitrap XL (Thermo Scientific, San
Jose, CA) platform with a data dependent scan mode. An in-house
packed capillary column (0.1 × 130 mm column packed with
3.6 μm, 200 Å XB-C18) was used for separation with a gradient
using 0.1% FA and ACN/0.1% FA at 200 nL/min. The spectra obtained
by MS were measured by the orbitrap at 30,000 resolution; and the
MS/MS spectra of the six most intense parent ions in the MS scan
were acquired by the orbitrap at 7500 resolution. The latest version
f NMRs, aged 2–3 years (A), 4–6 years (B), 7–12 years (C), and 15–24 years (D). Proteins
ticular age group are labeled in the images.
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of the Swiss-Prot database by SEQUEST (Proteome Discoverer v1.4,
Thermo Scientific) was used to interrogate the data files of each
sample. At least two high-confidence peptide matches were used
for protein identification where the false discovery rate is b1%. Pro-
teins that were matched with the same peptides were reported as
one protein group. Protein data reported from these analyses in-
clude: the SwissProt accession number, the percentage of the pro-
tein sequence identified by matching peptides, the number of
peptide sequences detected by the MS/MS analysis, the confidence
score of the protein, and the expected molecular weight and pre-
dicted isoelectric point (pI).

2.9. Immunoprecipitation and Western blotting

2.9.1. Immunoprecipitation (IP)
Individual NMR brain homogenates (250 μg) were suspended in

500 μL of IP buffer [0.05% NP-40, aproprotin 5 μg/mL, leupeptin 4 μg/mL,
pepstatin 4 μg/mL, and phosphatase inhibitor cocktail 10 μg/mL] in a
phosphate buffer solution, pH 8 [8 M NaCl, 0.2 M KCl, 1.44 M Na2HPO4,
and 0.24MKH2PO4]. Sampleswere precleared by incubationwith Protein
A/G agarose beads for 1.5 h at 4 °C. Next, each samplewas incubated over-
night with anti-VDAC 2 antibody (1:50 dilution) at 4 °C. Samples were
then incubated with Protein A/G agarose beads for 1.5 h at 4 °C and
washed 5 times with IP buffer, preserving the beads for a 1D-PAGE
experiment.

2.9.2. One-dimensional polyacrylamide gel electrophoresis (1-D-PAGE)
Sample homogenates (50 μg) or beads from VDAC2 immunoprecip-

itation experiment were suspended in 4× sample loading buffer [0.5 M
Tris, pH 6.8, 40% glycerol, 8% SDS, 20% β-mercaptoethanol, 0.01%
Bromophenol Blue] (diluted to 1× with DI water) and then heated at
95 °C for 5 min. Samples were cooled on ice and then loaded into Crite-
rion precast 18 well polyacrylamide gels (4–12% Bis–Tris) or Criterion
12% TGX stain-free polyacrylamide 18 well gels. Using XT MOPS or
TGS running buffer, gels were run at 80 V for 15 min and then at
120 V for approximately 100 min. Stain-free gels were scanned using
a Bio-RadChemiDoc XRS+ imaging system tomeasure the total protein
load before protein transfer to Western blots.

2.9.3. 1-D-Western blotting
In-gel proteins were transferred to a nitrocellulose membrane

(0.2 nm) using a Trans-Blot Turbo Blotting System (Bio-Rad, Hercules,
CA, USA) at 25 V for 30 min. After the transfer, membranes were incu-
bated in a blocking solution (3% bovine serum albumin (BSA) in TBS-T
[8 M NaCl, 2.4 M Tris, and 0.1% (v/v) Tween 20]) for 1.5 h. The
membrane was then incubated with primary antibodies: VDAC2 and
UCH (1:3000 dilution), tubulin (1:5000), and phosphoserine,
phosphothreonine and phosphotyrosine antibodies (1:6000) and
mTOR, p-mTOR (Ser2448), Akt, p-AKT (Ser473), p-PI3K (Tyr508)
(1:1000 dilution), which were added to the blocking solution
with gentle rocking for 2 h. The blots were washed three times
with TBS-T (5 min each) and incubated with a horseradish peroxi-
dase secondary antibody in TBS-T (1:5000) with gentle rocking.
The membranes were then washed three more times in TBS-T
(10 min each). Using a Clarity Western ECL substrate, membranes
were chemiluminescently developed in the dark for 5 min, scanned
using the ChemiDoc XRS+ imaging system, and quantified using
Image Lab software (Bio-Rad, Hercules, CA, USA). Blots were
stripped up to two times with ReBlot Plus Strong solution
(15 min each) followed by three rinses with TBS-T (5 min each).
Proteins were normalized either to total protein load of the gel or
to tubulin. For the VDAC2 immunoprecipitation experiment, the
phosphorylated amino acid residues in the VDAC2 protein were
normalized to the total amount of VDAC2 protein in the Western
blot.
2.10. Statistical analysis

A conservative analysis was carried out on PDQuest data using both
a two-tailed Student's t-test and a Mann–Whitney U statistical test,
independently comparing each age group to the youngest age cohort.
Protein spots were considered statistically significant if p b 0.05 in
both tests. To further determine significant differences (p b 0.05)
between all of the various age groups, a one-way ANOVA with post
hoc Bonferroni t-test was used. Protein spot fold-change values were
calculated by dividing the average, normalized spot intensities of the
gels of older age group by the average, normalized spot intensities of
the gels of the younger age group in the comparison. For Western blot
data, a one-way ANOVA with either a post hoc Bonferroni or Dunnett's
multiple comparisons test was used. All data are presented as
mean ± SEM. To ensure a rigorously conservative approach, spots
were extracted for MS/MS analysis only if the fold change was 40%
or greater or smaller in normalized spot density. Identifications of
proteins acquired with the SEQUEST search algorithm were consid-
ered to be statistically significant if p b 0.01. At least two peptide
sequences were used to identify each protein. To ensure a correct
identification of the proteins, a visual comparison was made be-
tween the expected molecular weight and isoelectric point of the
identified protein to the spot of the extracted 2-D gel plug.

3. Results

3.1. Age-related changes in proteins of the proteostasis network

Proteostasis network-related proteins with statistically significant
changes with age in protein levels and phosphorylation states are
labeled in the 2-D gel images of Figs. 1 & 2, respectively. PDQuest anal-
yses of all 2-D gels found 9 proteostasis network-related proteins
with significant changes in the NMR brain as a function of age
(Table 1). Many of these proteins are associated with the UPS. Signif-
icant elevation of heat shock protein (HSP) response with age was
noted by the increased levels of HSP70 protein 4 (Fig. 3A) and the de-
creased phosphorylation levels of HSP60 (Fig. 3B).While the primary
function of HSP is to maintain a protein's native 3-D conformation, if
a protein is terminally misfolded, some HSPs also function to chaper-
one the protein for UPS degradation. The UPS, illustrated in Fig. 4,
depicts other significantly altered proteins with age of the NMR
brain. Two of these proteins are involved in protein ubiquitinylation:
ub-like modifier-activating enzyme 1 (UBE1) and ub-conjugating
enzyme E2 variant 2 (UBE2v2). Both exhibit decreased phosphoryla-
tion levels in the older age cohorts, further supporting the notion of
increased UPS activity in the NMR with age is the increased
expression of ub-carboxy-terminal hydrolase (UCH), the protein
responsible for the removal of poly Ub chain, one Ub at a time from
the C-terminal end, before entry into the proteasome. Interestingly,
a component of the central proteasome itself, proteasome subunit
beta type 1 (PSβ1), showed decreased phosphorylation levels in
the intermediate and oldest age cohorts (Table 1).

Autophagy-related proteins with altered levels and/or phosphor-
ylation states in one or more age cohorts include all three isoforms of
the voltage-dependent anion channel (VDAC): VDAC1, VDAC2, and
VDAC3. VDACs are the major outer mitochondrial membrane porins
and regulators of energy metabolism and mitophagy. Levels of both
VDAC2 and VDAC3 were significantly increased in the old age
group as compared with control (Table 1), while phosphorylation
levels decreased with age for all VDACs (Fig. 3C).

3.2. Immunoprecipitation and Western blotting validations

Immunoprecipitation andWestern blot experiments were conduct-
ed on selected proteins to confirmMS/MS results.Western blot analysis
of UCH (Fig. 5A) confirmed a significant increase in the level of UCH in



Fig. 2.Representative Pro-QDiamond-stained 2-D gel images of isolated proteins from the brains of NMRs, aged 2–3 years (A), 4–6 years (B), 7–12 years (C), and 15–24 years (D). Proteins
with significantly altered phosphorylation levels (p b 0.05) in the particular age group are labeled in the images.
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the brains of the oldest age group (p = 0.049). Interestingly, the West-
ern blot also showed a significant increase inUCH levels for the interme-
diate (p= 0.011) and old age groups (p= 0.013) when comparedwith
the youngest age group. The results of the Western blot analyses of the
expression of VDAC2 (Fig. 5B) verified a significant increase in the old
age group (p = 0.005), while also showing increased levels of VDAC2
in the oldest age group (p = 0.025) both as compared with the youn-
gest age group. Analyses of the immunoprecipitation of VDAC2 with
anti-phosphoserine, anti-phosphothreonine and anti-phosphotyrosine
antibodies confirmed a significant decrease in the phosphorylation of
VDAC2 in the brain of the NMR for the intermediate age group (p =
Table 1
PDQuest and MS/MS results of NMR brain proteins involved in proteostasis networks with sign

Spot Protein identified Accession
#

Coverage
(%)

# of
peptides

Score MW
(kD

6205 VDAC1 P21769 36.04 8 39.06 30
6203 VDAC2 (Isoform 2) P45880-2 26.86 7 30.26 30

7206 VDAC3 Q9Y277 12.01 3 13.86 30
8106 Proteasome subunit beta type 1 P20618 9.54 2 14.98 26

3804 Ub-like modifier-activating
enzyme 1

P22314 12.48 8 32.44 117

7004 Ub-conjugating enzyme E2
variant 2

Q15819 13.10 2 13.11 16

3601 Ubiquitin carboxy-terminal
hydrolase

A6NJA2 18.53 6 21.49 51

3604 HSP60 P10809 18.85 9 50.80 61
2805 HSP70 protein 4 P34932 17.26 11 60.47 94
0.04), the old age group (p = 0.01), and in the oldest age group (p =
0.048) as compared with the youngest age group (Fig. 5C).

3.3. Evaluation of aspects of autophagy in the NMR with age

To further investigate the role that autophagy (illustrated in Fig. 6)
may play in the brain of the NMR with age, the PI3K/Akt/mTOR axis
was examined. Western blots were probed for p-PI3K (Tyr508), Akt, p-
Akt (Ser473), mTOR, and p-mTOR (Ser2448) (Fig. 7). Analyses revealed
that the p-PI3K protein level was found to be significantly increased
from the early to intermediate age group (p = 0.0001) and then
ificant altered expression and/or phosphorylation states as a function of age.

a)
pI Age

groups
compared

p-Value
expression

Fold
change
expression

p-Value
phosphorylation

Fold change
phosphorylation

.8 8.54 1 v 3 – – 0.0308 0.0132

.4 7.20 1 v 2 – – 0.0004 0.175
1 v 3 0.0493 44.7 0.0004 0.165
1 v 4 – – 0.0008 0.252

.6 8.66 1 v 3 0.0470 10.3 0.0307 0.0470

.5 7.20 1 V 2 – – 0.0133 0.144
1 v 4 0.0154 0.199

.8 5.76 1 v 3 – – 0.0421 42.7

.4 8.09 1 v 2 0.0499 8.83 – –
1 v 4 – – 0.0290 0.0872

.1 5.92 1 v 4 0.0492 18.2 – –

.0 5.87 1 v 2 – – 0.0359 0.112

.3 5.19 1 v 3 0.0150 7.72 – –
1 v 4 0.0448 6.46 – –
2 v 3 0.0417 3.31 – –

ncbi-p:P21769
ncbi-p:P45880
ncbi-p:Q9Y277
ncbi-p:P20618
ncbi-p:P22314
ncbi-p:Q15819
ncbi-p:P10809
ncbi-p:P34932


Fig. 3. Linear regressions of selected proteins illustrating trends inmedian protein levels in NMR brain for: (A) HSP70 protein 4, (B) HSP60, and (C) VDACs 1–3 (n= 5–9 individual brains
per age group comparison). Data obtained from PDQuest analyses. Spot densities of protein (A) levels were normalized to the total density of the gel by the PDQuest program. Spot
densities of phosphorylated (B & C) proteins (labeled by Pro-Q Diamond stain) were normalized to the spot densities of the corresponding spot of the Sypro Ruby-stained gel.
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significantly decreased from the intermediate to the old age group (p=
0.0007). Additionally, there was a significant decrease from the inter-
mediate to the oldest age group (p b 0.0001). The p-Akt/Akt ratio was
decreased from the intermediate age group to the old age group (p =
0.031). Similar to the other proteins in the PI3K/Akt/mTOR axis, the
p-Akt/Akt ratio increases from the youngest to the intermediate age
group (data trended toward significance). There were no significant
changes in the protein levels of mTOR; however the p-mTOR/mTOR
ratio follows a corresponding trend to that of p-PI3K, in which
Fig. 4. Summary of schematic diagram of expression proteomics and phosphoproteomics profi
NMR as a function of age. Proteins with significantly altered protein and/or phosphorylation le
there is a significant increase from the early to intermediate age
group (p = 0.013) and a significant decrease from the intermediate
age group to the old and oldest age groups (p = 0.0009) and (p =
0.0013), respectively.

We further analyzed the quantitative index of autophagy, the LC3-II/
LC3-I ratio in all age groups. The LC3 ratio showedno significant changes
with age (Fig. 8). Additionally, we analyzed levels of the autophagy
initiator protein, Beclin-1, which showed a significant decrease in the
oldest age group (p b 0.0001) (Fig. 8).
les of changes in proteins related to the ubiquitin–proteasomal system in the brain of the
vels with age in the NMR brain are labeled.



Fig. 5. Western blot and corresponding bar graph representations from the validation experiments of the changes in the protein levels of (A) Ub carboxy-terminal hydrolase (UCH),
(B) voltage-dependent anion channel 2 (VDAC2), and (C) the immunochemistry experiment validation of the significant decrease (*p b 0.05) in the phosphorylation of VDAC2 in the
brains of NMRs (n = 6 for each age group in A & B; n = 4 in C). Immunoreactivity with specific antibodies was detected by chemiluminescence.

Fig. 6. Diagram summarizing the PI3K/Akt/mTOR axis signaling pathway leading to the nucleation and formation of the phagophore to initiate the autophagy–lysosomal pathway.
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Fig. 7.Western blots and corresponding bar graph representations from the evaluation of the PI3K/Akt/mTOR axis in the brain of theNMR (n=6 for each age group, *p b 0.05, **p b 0.001,
***p b 0.0001). Phosphorylated PI3K was normalized to the total protein load of each lane of the gel. Phosphorylated Akt and mTOR were normalized to the protein content of Akt and
mTOR respectively. Immunoreactivity with specific antibodies was detected by chemiluminescence.
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4. Discussion

Not only are NMRs the longest-lived rodent, but they also main-
tain an extended health span. This extraordinary salubrious lifespan
has been attributed to, in part, by mechanisms that contribute to
maintaining proteostasis [7]. Processes that promote sustained
cellular homeostasis, such as unfolded protein response and protea-
some and autophagy pathways, remove damaged or unwanted pro-
teins, macromolecules and organelles which can be cytotoxic and
lead to neuronal death [42]. Additionally, these proteostasis systems
play a critical role in maintaining health bymodulating protein levels
in response to fluctuating physiological environments [42]. Previous
studies have shown that NMRs exhibit a more robust proteostasis as
compared with shorter-lived rodents [7,12–16]. In this current
study, we evaluated age-related changes in the NMR proteome and
phosphoproteome involved in proteostasis networks. These findings
suggest that the NMR is able to maintain this health-sustaining,
robust proteostasis throughout the majority of their lifespan. Here,
we discuss the implications of proteins with significant differential
levels and phosphorylation states from the respective proteomics
analyses (Table 1) as well as selected autophagy-related proteins
evaluated via Western blot analyses.

Typically, susceptibility to age-related diseases correlates to a de-
clining capacity to generate a stress response [43,44]. Consistent
with this notion, in the brain of the salubrious NMR, levels of
HSP70 (protein 4) were increased and phosphorylation of HSP60
decreased with age. HSP70 is a highly conserved pleiotropic protein
that executes many cellular functions including: folding of newly
synthesized proteins, prevention of protein aggregation, aiding in
endocytosis, signal transduction, protein targeting, and relaying
proteins to the ubiquitin–proteasome system and autophagy–lyso-
somal pathways (reviewed in [45]). Moreover, HSP70 mediates
proteasome assembly during stress [46], and together with its co-
chaperone, HSP40, HSP70 is involved in mitigation of proteotoxic
insults to the proteasome [23]. Further, overexpression of HSP70
has been shown to impede apoptotic mechanisms [47,48] and to
curtail neurodegeneration and senescence [49,50]. Previously,
HSP70 levels in NMRs have been shown to be higher in liver lysates
compared with those in mice [23], consistent with the idea that the
increased levels of this important chaperone with age in the brain
observed in the current study may suggest a more robust and glob-
al proteostasis in these long-lived animals.

HSP60 primarily functions in the mitochondria to properly fold pro-
teins. In addition, HSP60 has been reported to have anti-apoptotic prop-
erties as it can bind and inhibit pro-apoptotic proteins, Bax and Bak, to
prevent neurodegeneration [47,51]. Dephosphorylation of HSP60 has
been reported to enhance chaperone functions [52]. Therefore, the
data fromour current study suggest that HSP60may contribute to prop-
er mitochondrial function in older NMR brains by preventing protein
aggregation and by suppressing apoptotic mechanisms to impede
neuronal loss.

Ubiquitinylation directs proteins to specific cellular targets, such as
proteasomes or DNA, as well as regulating protein interactions and
activity [53]. Protein ubiquitylation requires the activation and transfer
of Ub to a protein in a three-step process. Two proteins involved in this
ubiquitinylation process, UBE1 and UBE2v2, were found to have altered
levels and/or phosphorylation states in the brains of NMR in different
age groups. In the old age group, protein phosphorylation levels of



Fig. 8.Western blots and corresponding bar graph representations of Beclin-1 and the LC3-II/LC3-I ratio in the brain of the NMR (n= 6 for each age group, ***p b 0.0001). Proteins were
normalized to the total protein load of each lane of the gel. Immunoreactivity with specific antibodies was detected by chemiluminescence.
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UBE1 were found to be increased compared with the youngest age
group. UBE1 not only catalyzes the first step in the Ub–proteasomal
pathway, but it is also essential for the protein ubiquitinylation that
modulates DNA double-strand break repair, suggesting an important
role in policing genomic integrity and preventing disease pathogenesis
[54]. Posttranslational modifications to UBE1 isoforms are still poorly
understood [55]. Knownputative roles of UBE1phosphorylation include
targeting this protein to different subcellular locations and modulation
of nucleotide excision repair [56,57]. However, with multiple UBE1 iso-
forms containingmultiple phosphorylation sights in various domains of
the protein, the implications of increased phosphorylation of UBE1 in
this current study are as of yet, uncertain. However, as this critical
enzyme is reported to be the apex of downstream signaling [55], we
opine that UBE1 may be involved in maintaining a healthy genome
and conceivably may be related to the dearth of cancer in this long-
lived rodent.

Ubiquitinylation is a dynamic process and protein eventual protein
destination depends on the lysine to which it is attached and
whether it is monoubiquitinylated, homo-polyubiquitinylated, or
hetero-polyubiquitinylated [58,59]. The UBE2v2 preferentially
ubiquitinylates Lys63, which is reported to participate in chaperoning
proteins for DNA repair, lysosomal degradation of epidermal growth
factor receptors, and NF-κB activation by degradation of class I major
histocompatibility complex molecules [60–63]. Here, protein levels of
UBE2v2were increased in the intermediate age group, while phosphor-
ylation levelswere decreased in the intermediate and oldest age groups.
The intricacies of UBE2 structure and function are complex; and as such,
the implications of altered phosphorylation states have yet to be
elucidated, though we speculate that this protein may be involved in
promoting the ability for NMR to maintain a healthy genome.

UCHs are a family of proteins responsible for the removal of thepoly-
Ub tags. Dysregulation of UCH may result in the accumulation of poly-
Ub proteins; and this accumulation is reported in many chronic neuro-
degenerative diseases, as they are present in the senile plaques and
neurofibrillary tangles in Alzheimer's disease (AD) and in the Lewy
bodies of Parkinson's disease [64]. Further, in AD, it is hypothesized
that the UPS-mediated degradation of amyloid-beta (Aβ) is impaired,
which leads to ubiquitinylated Aβ aggregating into neurotoxic plaques
[65]. Previously, we have shown that a particular UCH variant, UCHL1,
is oxidized in AD brain, which could conceivably inhibit Aβ degradation
[66,67]. However, it has been reported that even though NMRs exhibit
Aβ levels similar to that of 3xTg-AD mice, there is no accumulation
of senile plaques in the NMR brain [8,68]. Moreover, in mice
ubiquitinylated proteins accumulate with age; however, in NMRs
levels of ubiquitinylated proteins of 2 year-old and 26 year-old
rodents were similar [12]. Therefore, the increase of UCH levels in
the brain of the oldest age group may function to maintain
prolonged cellular proteostasis via availability to mediate disposal
of increasing levels of neurotoxic proteins, such as Aβ.

When attached to the 26S proteasome and after the removal of Ub by
UCH, the protein is degraded by threonine proteases in the core of the 26S
proteasome [69]. In this current study, PSβ1, which is responsible for
PGPH activity, was found to have decreased levels of phosphorylation in
the intermediate and oldest age groups as compared with the youngest
age group. Decreases in proteasomal function and/or expression have
been reported in multiple neurodegenerative diseases including: AD,
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PD, Huntington disease, amyotrophic lateral sclerosis, and prion diseases
[70–74]. Moreover, β1, the variant identified in this current study, has
been reported to promote anti-apoptotic activity of plasminogen activa-
tor inhibitor 2 (PAI2) [75]. While the consequences of the phosphoryla-
tion of this subunit are unclear, it has been shown that phosphorylation
of β-subunits in the prokaryote Myobacterium tuberculosis can inhibit
proteasomal assembly [76]. While there are multiple β-subunits in eu-
karyotes, unlike in prokaryotes that have only one type, the reduced
phosphorylated states in the oldest NMR brains could suggest that there
is an increased affinity toward proteome assembly and therefore, an in-
creased degradation of unwanted or damaged proteins, clearing the cell
of detritus to promote healthy cellular function. This observation would
be consistentwith the observed high levels of proteasome activity report-
ed for brain lysates of the NMR [8].

Voltage dependent anion channels (VDACs) are outermitochondrial
membrane porins that are involved inmitochondrialmetabolic process-
es by opening at lowmembrane potentials to regulate metabolic flux of
small hydrophilic molecules and ions [77,78]. VDACs also participate in
mitochondrial autophagy by recruiting Parkin to docking sites for the
removal of defective mitochondria, targeting the organelle for degrada-
tion by lysosomes [79–81]. Decreased levels of VDACs could lead to
an increased presence of malfunctioning mitochondria, leading to
increased protein oxidation and cellular detritus and ensuing neuro-
nal dysregulation. However, in this study, the increased levels of
VDACs suggest that the metabolic flux and the policing of mitochon-
drial function are improved in the aging brain of the NMR. VDACs are
known to be phosphorylated by multiple kinases including: PKA,
GSK3β, PKC, p38 MAP kinase, Nek1, and endostatin reduced hexoki-
nase 2 [81,82]. Phosphorylation of VDAC1 by Nek1 has been reported
to open the channel [82]. VDAC phosphorylation by GSK3β or PKA in-
creases the interaction between VDAC and tubulin, blocking the
channel [81]. The consequences of the decreased phosphorylation
levels of VDAC2 and VDAC3 in the aged NMR brain are unclear and
may reflect the greater proportion of breeding animals in the older
samples. Further investigations are needed to elucidate the implica-
tions of this reported global decrease in phosphorylation in brains of
NMR rodents with age.

To further assess the role that autophagy may contribute to the
sustained health span of the NMR by regulating cellular proteostasis,
the PI3K/Akt/mTOR axis, Beclin-1 and LC3 were examined in the
NMR brain as a function of age. Previous data suggested that the
NMR, under basal conditions, maintains higher levels of autophagy,
thereby removing potentially toxic proteins before they can nega-
tively impact organ functionality [13] and that macroautophagy
was shown to be substantially higher in NMRs than in shorter-lived
mice [13,16]. Further, when the autophagy markers LC3-I, LC3-II
and Beclin-1 were measured in one-day-old NMRs and one-day-old
mice, the NMRs were shown to have a higher LC3-II/LC3-I ratio,
even though their Beclin-1 levels were lower, suggesting that
NMRs have significantly higher basal levels of autophagy than mice
[7]. Although Beclin-1 plays a critical role in the regulation of
autophagosome formation, it is also a shorter-lived protein involved
in the formation of pre-autophagosomal structures. Consequently, it
is generally accepted that the LC3-II/LC3-I levels usually correlate
more reliably with the number of autophagosomes and can be used
to monitor autophagosome formation [83]. Here, we measured the
levels of Beclin-1 in the brain of the NMR as a function of age.
Beclin-1 was significantly decreased in the oldest age group relative
to the youngest age group. When the LC3-II/LC3-I ratio was mea-
sured, the levels of this quantitative index of autophagy did not
significantly change, suggesting that NMRs do maintain a high level
of autophagy throughout a vast majority of their lives.

The serine/threonine kinase, mTOR, is a major modulator of autoph-
agy that receives inputs from many different signaling pathways [84].
One of the most important upstream positive regulators of mTOR is
Akt. The hyperphosphorylation of Akt induces a complete inhibition of
TSC2 and activation of mTOR through direct phosphorylation. In turn,
the mechanism of activation of Akt is induced by another kinase, PI3K.
All together, these proteins are recognized as the PI3K/Akt/mTOR axis,
which plays a central role in controlling one of the processes of
proteostasis, autophagy. Our results showed increased phosphorylation
of Akt and PI3K (p85 subunit) at Ser473 and Tyr508, respectively, in the
intermediate NMR age group. This group was made up predominantly
of breeding pairs and the unexpected change in this group likely indi-
cates that breeding status may affect mTOR signaling through the inter-
action of the pathway with sex steroids. The hyperphosphorylation of
these two proteins do not appear to affect NMR aging negatively.
Indeed, the increase of PI3K/Akt activity in intermediate-aged NMRs in
this study could reflect the diversity of one of the several main down-
stream targets, mTOR. Consistent with this notion, our data showed a
hyperphosphorylation ofmTOR at Ser2448 in the brain of this age cohort.
Additionally, an increase in activity of the proteasome was noted by a
decrease in phosphorylation of PSβ1 for the intermediate age group
(Table 1), perhaps as a compensatory mechanism to the decreased
autophagic response seen in this age group.

Taken together, these results demonstrate a plausiblemechanismby
which NMRs resist development of age-related diseases, even though
they show high levels of oxidative damage to visceral tissues, even at
young ages [10,85]. Given that NMRs endogenously produce high levels
of Aβ and phosphorylated tau at a young age, yet live more than two
decades with these high levels, it appears that this species is exceeding-
ly tolerant of high levels of these proteins reportedly casually associated
with Alzheimer's disease and has evolved mechanisms to counter its
neurotoxicity [8,68,86]. One possible explanation could be the sustained
activity of the autophagy pathway in the older age groups. In fact, a
recent paper published from our lab, supporting earlier findings by
LaFerla, Oddo and others, showed increased activity of the autophagy
pathway in AD and Down syndrome subjects, suggesting that Aβ
could be one of the major causes causing hyperactivation of the path-
way [86].

Brains used in this study were obtained from NMR animals which
were bothmale and female breeding and non-breeding animals. Conse-
quently, a possible caveat of these results may be sample variation due
to breeding status and resultant hormonal differences [87]. To assess the
contribution of breeding status, future studies comprising a larger
number of NMRs of both breeding and non-breeding status will be nec-
essary. Understanding and characterizing the contributions of breeding
status to the NMR proteome are essential to clarify this potential caveat
of the current and many prior NMR studies.

Our results of this age-related study in the brain of the NMR expose
significant alterations in protein levels and phosphorylation states of
proteins involved in the functioning of the proteostasis network. In gen-
eral, the identified proteins and phosphoproteins tend to have increased
expression and/or activity that promote proteostasis. Mechanisms that
remove cellular detritus promote an efficient, functional environment.
Additionally, by using long-lived species to identify specific proteins
involved in these processes, targets for potential therapies are identified
that conceivably may aid in increasing human health span.
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