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Abbreviations
3NT  3-Nitrotyrosine
AD  Alzheimer disease
Aβ  Amyloid-beta
CRMP2  Collapsin response mediator protein-2
EAD  Early-onset Alzheimer disease
ESI–MS/MS  Electrospray ionization tandem mass 

spectrometry
FAD  Familial Alzheimer disease
GSH  Glutathione
HNE  4-Hydroxynonenal
IPL  Inferior parietal lobule
LAD  Late-onset Alzheimer disease
MCI  Mild cognitive impairment
NFT  Neurofibrillary tangle
PC  Protein carbonyl
PCAD  Preclinical Alzheimer disease
PET  Positron emission tomography
Pin1  Peptidyl-prolyl cis/trans isomerase NIMA-

interacting 1
PMI  Postmortem interval
RNS  Reactive nitrogen species
ROS  Reactive oxygen species
SP  Senile plaque
UCH L-1  Ubiquitin carboxy-terminal hydrolase L-1

Introduction

Alzheimer disease (AD) is a devastating neurodegenerative 
disease and the primary known cause of dementia. While 
there are many factors that go into the development of AD, 
the one primary risk factor is aging. It is important, how-
ever, to make the distinction between normal aging and AD 
as most individuals do not develop AD as a part of their 
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aging process, though as medicine continues to advance in 
effectiveness and the prolonging of the normal age span, 
the rate of AD development is expected to continue to 
increase (Hebert et al. 2003).

Alzheimer disease is clinically characterized by a 
loss of cognitive ability and short-term memory forma-
tion. Patients may be subjected to the Mini-Mental Status 
Examination (MMSE) if their clinician suspects abnormal 
cognitive performance. Pathologically, AD is a diverse and 
complex disease affecting nearly every subcellular system 
of the affected neurons (Oddo 2008; Tu et al. 2014; Moh 
et al. 2011; Wilkins et al. 2014). One primary pathological 
characteristic has been identified as being an accumulation 
of amyloid-beta 1–40 and 1–42 (Aβ1–40 and Aβ1–42) though 
the primary amyloidogenic product implicated in AD has 
been Aβ1–42 (Glabe 2001; Walsh and Selkoe 2004). Aβ 
has long been known to form extracellular agglomerations 
termed senile plaques (SPs), but more recently it has been 
found that the more toxic forms of Aβ are not the insoluble 
(SPs) but rather more soluble Aβ oligomers (Glabe 2005). 
It is these oligomers that are proposed to do the most oxi-
dative damage to the cell, perhaps due to their ability to 
translocate into membrane systems such as the cell mem-
brane and the mitochondrial membrane. Aside from Aβ, 
hyperphosphorylated tau has been shown to lead to micro-
tubule destabilization and formation of neurofibrillary 
tangles (NFTs) (Braak and Braak 1997; Andreadis et al. 
1992). NFTs are composed primarily of paired helical fila-
ments of hyperphosphorylated tau, and the severity of an 
AD patient’s dementia is correlated closely with NFT den-
sity (Braak and Braak 1997). The loss of tau and the subse-
quent destabilization of microtubules may play a large role 
in the pathogenesis of AD due to a loss in structural integ-
rity and methods for intracellular trafficking of vesicles and 
organelles which rely in part on organized microtubule net-
works to function properly.

While Aβ and NFTs have been the focus of the major-
ity of AD research since its official recognition, there are 
many other systems, as previously discussed, that go awry 
in AD such as metabolism, insulin signaling, the proteosta-
sis network, synaptic growth and maintenance, cell cycle 
control, and the antioxidant response system to name a few. 
While systems affected may at first seem disparate, there 
is a common unifying theme in oxidative/nitrosative stress 
and altered redox state of the cell (Butterfield et al. 2013).

Alzheimer disease can be further categorized into three 
primary and one alternate stagings: amnestic mild cogni-
tive impairment (MCI), early-onset AD (EAD), late-stage 
AD (LAD), and preclinical AD, respectively. MCI is often 
referred to as the first stage or transition stage of AD, 
and it is the stage in which the patient and those around 
them begin to first notice signs of memory loss, yet not all 
patients with MCI transition to AD (Jicha et al. 2006). Aβ 

load and NFT density increase in number and concentra-
tion through the progression of MCI to LAD, with LAD 
presenting with the highest loads and subsequently the low-
est neuron density and highest cognitive impairment and 
ultimately death. PCAD is an unusual stage in which the 
patients has significant levels of Aβ and NFT, yet perform 
normally in cognitive testing and activities of daily living 
(Bradley et al. 2010). PCAD has of late been the focus of 
experimentation for some in order to determine the differ-
ences in patient outcome, though PCAD is currently diffi-
cult to study due to the necessity to determine Aβ and NFT 
density by PET scanning methods, so subjects are usually 
identified only after death from another means (Aluise 
et al. 2011).

Oxidative stress

The maintenance of the cellular redox state is of utmost 
importance in regard to not only the normal functioning of 
the cell, but more importantly its survivability. The basis of 
the cellular redox state is composed of molecules termed 
oxidants and reductants, based on their chemical ability 
to oxidize or reduce substrate molecules. Common oxi-
dants known to participate in the redox state are molecules 
such as hydrogen peroxide (H2O2), superoxide (O2

−), the 
hydroxyl anion (OH−), the hydroxyl radical (OH), nitric 
oxide (NO), and peroxynitrite (ONOO−) (Dasuri et al. 
2013). Many diseases such as AD have been found to have 
a dysregulation of oxidant levels which have been impli-
cated in the disease pathogenesis (Butterfield and Sultana 
2011; Nourazarian et al. 2014; Indo et al. 2015; Tangvara-
sittichai 2015). This loss of homeostasis can both be attrib-
uted to an over-production of oxidants as well as a loss 
of antioxidants or the antioxidant defense system. Within 
the brain, the primary means of dealing with an excess 
of oxidants is the antioxidant glutathione (GSH) and its 
supporting enzymes, glutathione peroxidase (GPX), glu-
tathione reductase (GR), and glutathione-S-transferase 
(GST). A dysregulation in the redox state of the cell if left 
unchecked leads to oxidant-induced damage of organelles, 
membranes, and biomolecules such as proteins, lipids, and 
nucleic acids (Fig. 1) (Dasuri et al. 2013; Uttara et al. 2009; 
Halliwell 2012; Valko et al. 2007).

One major source of oxidant generation in AD is from 
the functioning of the mitochondria during oxidative phos-
phorylation in which it produces ATP for the cell. Healthy 
mitochondria have been reported to leak superoxide radical 
anion as a natural part of its normal functioning due to the 
imperfect efficiency of electron transfer through the elec-
tron transport chain (Dasuri et al. 2013; Adam-Vizi 2005; 
Calabrese et al. 2005). This superoxide radical leak has 
also long been attributed to one of the primary theories of 
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normal aging. However, as AD progresses and mitochon-
dria are damaged, the normal efficiency of the mitochon-
dria also deteriorates leading to a feed-forward mecha-
nism of superoxide production (Friedland-Leuner et al. 
2014). Superoxide in and of itself is a potent oxidant, yet 
it has its limitations, one being that it cannot easily cross 
into membrane systems due to its negative charge. How-
ever, some suggest that the H+ within the intermembrane 
space of mitochondrion leads to HO·

2,which, being neutral, 
can cross membranes (Hernandez-Saavedra and McCord 
2007). In an attempt to rid the cell of superoxide, enzymes 
such as the mitochondrial-resident manganese superoxide 
dismutase (Mn-SOD) and the cytosolic copper/zinc-super-
oxide dismutase (Cu/Zn-SOD) reduce superoxide to hydro-
gen peroxide (Halliwell 2012). Hydrogen peroxide is a rel-
atively weak oxidant; however, its lack of a dipole moment 
allows it to cross into and through membranes to other cel-
lular compartments, whereas superoxide itself is essentially 
localized upon production. Hydrogen peroxide may also 
react with either copper (I) or iron (II) in a Fenton chemical 
reaction to produce the much more reactive hydroxyl radi-
cal that is accountable for much of the downstream damage 
of superoxide production (Halliwell and Gutteridge 1984). 
The production of hard nucleophiles such as hydroxyl radi-
cal leads directly to the damage of proteins and nucleotides.

The proper functioning of proteins is primarily the result 
of the integrity of its three-dimensional structure. Protein 

oxidation has implications for protein dysfunction or loss 
of function, depending on the severity and location of the 
oxidative damage to the protein (Butterfield 2002). Upon 
protein oxidation, proteins may lose their secondary and 
tertiary structural integrities which may lead to the expo-
sure of hydrophobic amino acids to the protein surface 
causing aggregation and further unfolding and loss of activ-
ity (Dunlop et al. 2009; Dean et al. 1997). Direct oxidative 
insult to the peptide chain backbone may even result in 
fragmentation (Dean et al. 1997). The most common type 
of direct protein oxidation is that of protein carbonylation, 
in which an aldehyde or ketone is formed. Both the side 
chains of every amino acid along with the peptide back-
bone are susceptible to this form of oxidation, though the 
aromatic amino acids such as tryptophan and tyrosine are 
prone to generate hydroxy derivatives (Stadtman and Lev-
ine 2000). Among the more susceptible amino acids to oxi-
dation are methionine and cysteine, with methionine being 
oxidized to form methionine sulfoxide (MeSOX) while 
the sulfhydryl group of cysteine may be oxidized to form 
disulfide bonds either intra or intermolecularly, though 
these forms of oxidation have their own enzymatic mecha-
nisms of reversal (Dunlop et al. 2009). Moreover, cysteine 
can be oxidized to sulfenic (–SOH), sulfinic (–SOH2), and 
sulfonic (–SOH3) acids, the first being often reversible and 
involved in signaling (Wang et al. 2008; Nakamura et al. 
2015).

Fig. 1  Proposed pathways 
involved in the production of 
ROS/RNS in Alzheimer disease 
that lead to protein oxidation/
nitration and lipid peroxidation
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Indirect protein oxidation may also occur in which the 
oxidant interacts with another molecule prior to an interac-
tion with the actual protein (Suzuki et al. 2010). One com-
mon form of indirect protein oxidation is through the con-
jugation of reactive aldehydes to the protein. Reactive 
aldehydes such as acrolein or 4-hydroxynonenal (HNE) are 
α/β-unsaturated aldehydes which are the products of the lipid 
peroxidation of unsaturated fatty acids such as arachidonic 
acid. The brain is specifically prone to secondary carbonyla-
tion via lipid peroxidation due to the large concentrations of 
poly-unsaturated fatty acids (PUFAs) resident in brain tissue 
(Butterfield et al. 2010a, b). The process of lipid peroxida-
tion is specifically toxic due to allylic hydrogen abstrac-
tion and subsequent radical chain reaction and propagation 
on acyl chains of polyphenols, processes that may spread 
between membrane systems and even adjacent cells (Butter-
field et al. 2010a, b; Bader Lange et al. 2010; Castegna et al. 
2004). Reactive aldehydes in the presence of nucleophilic 
protein side chains undergo Michael addition, resulting in 
indirect protein carbonylation. This covalent modification 
results in structural changes which likely results in protein 
activity and cause dysfunction (Perluigi et al. 2012).

Lipid peroxidation in the AD brain may be measured by 
the detection of elevated levels of free or protein-bound acr-
olein, HNE, isoprostane 8,12-iso-iPF2α-VI, F2-isoprostane 
(F2-IsoP), and F4-neuroprostane (F4-NP) (Markesbery et al. 
2005; Yao et al. 2003). A primary means of defense against 
lipid peroxidation products for the neuron is the ability of 
GSH to bind free HNE prior to reaction with a biomolecule 
of importance such as a protein (Lovell et al. 1998). Not 
only has it been shown that there was an increase in HNE-
bound by GSH (HNE–GSH) in AD brain, but many of the 
enzymes responsible for the upkeep and maintenance of 
GSH levels, such as glutathione-S-transferase (GST) and 
multidrug-resistant protein-1 (MRP-1), were found to be 
modified by HNE themselves and subsequently a buildup 
of HNE-bound protein adducts (Lovell et al. 1998; Sultana 
and Butterfield 2004). This finding suggests that there is a 
significant increase in free and protein-bound HNE in AD 
which has overwhelmed the cells defense against reactive 
aldehydes. This deficiency in HNE clearance likely plays a 
role in HNE-modified proteins (Tables 1, 2, 3).

The detection of carbonylated proteins have had been 
simplified with the use of 2,4-dinitrophenylhydrazine 
(DNPH), which upon contact with a carbonyl may form a 
hydrazone, detectable through the use of immunochemical 
assay and antihydrazone adduct antibodies (Suzuki et al. 
2010; Levine et al. 1994). Indirect carbonylation via reac-
tive aldehyde addition is also detected immunochemically 
as well as through the use of spectrophotometry (Sayre 
et al. 1997; Lovell et al. 2001).

Nitric oxide is an important signaling molecule in regu-
lating vascular smooth muscle relaxation, antixenobiotic 

actions, and postsynaptic density functions, among other 
processes (Shinde et al. 2000; Xu et al. 1994). However, 
nitric oxide itself is also a free radical which may become 
toxic if its concentrations become too great (McCarty 
2006). Nitric oxide when in the presence of superoxide may 
react to form peroxynitrite (ONOO−), a reactive anion (Wil-
liamson et al. 2002). The reaction between nitric oxide and 
superoxide in the cytoplasm is relatively slow in part due to 
the rarity of two radical molecules coming into contact in a 
radical–radical recombination step; however, if nitric oxide 
diffuses into the mitochondria, where large amounts of oxy-
gen and superoxide reside, the rate of nitric oxide autoxi-
dation has been shown to increase dramatically contributing 
to a “lens effect” wherein nitric oxide and superoxide are 
focused into hydrophobic compartments further increasing 
the rate of autoxidation (Moller et al. 2007; Liu et al. 1998). 
This production of peroxynitrite (in the presence of CO2) 
induces protein nitration, covalently modified onto tyrosine 
side chains in the 3′ position resulting in the protein nitra-
tion product, 3-nitrotyrosine (3-NT) (Ischiropoulos 2009). 
Nitration of the 3′ position likely contributes to an interrup-
tion in protein signaling due to the ability of tyrosine to be 
phosphorylated on the 4′ hydroxyl group in specific target 
proteins (Feeney and Schoneich 2012).

Amyloid‑β‑induced oxidative stress hypothesis 
of AD and the importance of Met‑35

The amyloid-β-induced oxidative stress hypothesis posits 
that amyloid-β, specifically Aβ1–42, is primarily responsible 

Table 1  Summary of metabolically involved proteins discussed 
within the text, modifications identified, and the AD stage and/or 
brain region analyzed

Identified protein Modifications

ATP synthase HNE, 3NT

Alpha-enolase HNE, 3NT, PC

Aldolase HNE, 3NT

Aconitase HNE

Creatine kinase BB PC

Phosphoglycerate mutase 1 PC

Carbonic anhydrase II PC

Triose phosphate isomerase 3 NT, PC

Lactate dehydrogenase HNE, 3NT

Phosphoglycerate-3-dehydrogenase 3NT

VDAC 3NT

Pyruvate kinase HNE, PC

Phosphoglycerate kinase HNE

Malate dehydrogenase 3NT

Glucose-regulated protein precursor 3NT
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in large part for the oxidative damage observed to take 
place in AD (Butterfield et al 2001; Markesbery 1997). 
Oxidative stress has long been associated with AD and MCI 
and has been found to associate with Aβ. As previously 
discussed, there are two primary forms of Aβ: Aβ1–40 and 
Aβ1–42, with Aβ1–42 being found to be more neurotoxic and 
aggregate more quickly than the 1–40 proteolytic variant 
(Butterfield and Sultana 2011). The effect of Aβ1–42 on the 
levels of intracellular ROS has been verified in a number 
of experiments by our laboratory and others using in vivo 

and in vitro methods. For instance, Aβ1–42 was added to 
9- to 11-day-old primary hippocampal neuronal cultures 
which led to an increase in markers of oxidative stress and 
resulted in neurotoxicity (Yatin et al. 1999; Boyd-Kimball 
et al. 2004). Other studies have shown that this Aβ-induced 
oxidative stress may be mitigated through the use of free 
radical scavengers such as melatonin, estradiol, vitamin E, 
while more studies demonstrate that the neurotoxic effects 
of the Aβ1–42 peptide were modulated specifically by vita-
min E (Boyd-Kimball et al. 2004; Yatin et al. 2000; Quinta-
nilla et al. 2005; Olivieri et al. 2001; Behl and Moosmann 
2002). While these experiments demonstrate the neurotoxic 
effects of Aβ1–42, the method of Aβ-induced ROS genera-
tion was as of then unclear. We have since provided evi-
dence that suggests a major method of ROS generation by 
Aβ1–42 is through the one-electron oxidation of the methio-
nine-35 residue followed by lipid peroxidation, a process 
that involves a chain reaction (Fig. 2) (Butterfield and 
Boyd-Kimball 2005; Butterfield et al. 2007, 2010a, b). This 
mechanism is a way for a small free radical initiation step 
on Aβ1–42 to be greatly amplified by continuous production 
of acyl-chain-resident C-centered free radicals that subse-
quently leads to production of HNE.

Redox proteomics of human samples

Brain samples from subjects diagnosed with MCI- or AD-
related dementia are invaluable because of their absolute 
physiological relevance. While data from animal models 
provide valuable insight into disease progression, extrapo-
lating the data for use in humans has proven to be difficult 
in large part due to the inherent physiological and bio-
chemical differences. Moreover, it is important to maintain 
sample integrity with a low postmortem interval (PMI), as 
higher PMIs may result in protein degradation and oxida-
tion before analysis can begin. At the University of Ken-
tucky, autopsy-derived specimens are obtained with a very 
short PMI, usually between 2 and 4 h. This low PMI allows 
us to perform our studies, such as redox proteomics, using 
human samples as close to living brain as feasibly possible.

Proteomics itself is a global term for the study of the 
proteome, whether in its entirety or a specific portion. The 
objective of redox proteomics is to narrow this focus onto 
that of oxidatively/nitrosatively modified proteins with the 
ultimate goal of protein identification matched with oxida-
tive modification. Our laboratory pioneered the establish-
ment and utilization of redox proteomics in the study of 
AD and has contributed a great deal to the understanding 
of the diseased proteome in the various stagings of AD: 
PCAD, MCI, and AD. There are two primary methods for 
the employment of redox proteomics: the first being the 
gel-free enrichment of proteins which present oxidative 

Table 2  Summary of signaling proteins discussed within the text, 
modifications identified, and the AD stage and/or brain region ana-
lyzed

Identified protein Modifications

Glutamine synthase PC

CRMP2 HNE, 3NT, PC, SNO

Alpha-enolase HNE, PC, SNO

Pin1 PC

Gamma-SNAP PC

Alpha-tubulin HNE

Actin HNE

Transition initiation factor alpha HNE

Elongation factor Tu HNE

Syntaxin-binding protein 1 PC

Carbonic anhydrase II PC

Mitogen-activated kinase 1 PC

Alpha-INTERNEXIN SNO

Glutamate dehydrogenase SNO

Proenkephalin SNO

Proopiomelanocortin SNO

GFAP SNO

Septin SNO

Table 3  Summary of proteins involved in the proteasome or 
unfolded protein response discussed within the text, modifications 
identified, and the AD stage and/or brain region analyzed

Identified protein Modifications

UCH L-1 PC

Cu/Zn-SOD PC

Mn-SOD HNE

HSPA8 3 NT, PC

HSP70 HNE, PC

Glutathione-S-transferase Mu 3NT

Multidrug-resistant protein-1 HNE

Multidrug-resistant protein-3 3NT

Peroxiredoxin 6 HNE, 3NT

Glutathione-S-transferase HNE

Proteasome HNE
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modifications, while the second a gel-based global method 
(Butterfield et al. 2012). A non-gel method for redox prot-
eomic analysis utilizes strong cation exchange and reverse-
phase liquid chromatography and both mass spectrometry 
and tandem mass spectrometry (MS/MS). In the non-gel-
based method, the proteins are digested in solution and 
peptides separated using nanoflow liquid chromatography 
where the separated peptides are subjected to automated 
MS identification.

In the gel-based method, samples are prepared accord-
ingly to established protocols and the proteins separated 
in the first dimension according to their respective isoelec-
tric points. Immediately following isoelectric separation, 
the proteins are run in the second dimension according to 
their migration rate. The two-dimensional separation yields 
distinct and isolated protein localizations within the gel 
which are ideally suited for comparison and identification. 
In order to determine the oxidatively modified proteins, the 
gels are first imaged and then transferred to a nitrocellulose 
membrane for immunochemical detection of the oxidative 
modification of interest on a 2-D western blot. The actual 
spot comparison is made using spot-matching software 
such as PD-Quest or Dimensional Delta 2D by comparing 
individual spot density to matched proteins. Once analysis 
is completed, identification of selected proteins is initiated 
through the excision of the target spot and in-gel trypsin 
digestion. The digested spots are then identified based on 

their peptide mass fingerprint (PMF) through the use of 
either matrix-assisted laser desorption ionization time-of-
flight (MALDI-TOF) mass spectrometry or sequencing of 
the tryptic peptides using electrospray ionization tandem 
mass spectrometry (ESI–MS/MS). ESI–MS/MS is espe-
cially useful due to the ability to select parental peptides to 
send through to an additional fragmentation which allows 
for an identification of the amino acid sequence and subse-
quently the tryptic peptide. Further, this technique has been 
developed to probe possible oxidatively modified sites or 
sites for other posttranslational modifications. The iden-
tification of the tryptic peptide is accomplished through 
the searching of peptide databases such as MASCOT and 
SEQUEST.

Oxidized brain proteins from subjects with AD 
and MCI gathered using redox proteomics

Energy metabolism

A prominent hallmark of AD and MCI is a marked decrease 
in the metabolism of glucose, primarily glycolysis, the tri-
carboxylic acid cycle (TCA), and the electron transport 
chain. Evidence of glucose utilization deficiency has been 
known for some time with data collected from fluorodeox-
yglucose positron emission tomography (FDG-PET) scans 

Fig. 2  Schematic illustration 
of our proposed schematic 
for the method by which Aβ 
oligomers insert into a bilayer 
and subsequently initiate lipid 
peroxidation through the one-
electron oxidation of Met-35 of 
the Aβ1–42 peptide
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(Rapoport 1999). The importance of an impaired metabolic 
function in the brain is magnified by the fact that the brain 
consumes 30 % of inspired oxygen and 20 % of ingested 
glucose. Any impairment in glucose metabolism may have 
drastic effects to the overall health of the brain, and thus the 
organism. Redox proteomics has been able to shed some 
light on some possible reasons for this glucose utilization 
deficiency with the discovery of many proteins associated 
with metabolic processes being posttranslationally modi-
fied either by lipid conjugation or by reaction with ROS/
RNS.

ATP synthase, an enzyme in the final step in the produc-
tion of ATP from the electron transport chain, was found 
to be modified by HNE in the AD hippocampus, while 
α-enolase, aldolase, and aconitase were all found to be 
HNE-bound in the AD cortex (Perluigi et al. 2009). AD 
IPL was shown to have increased protein carbonylation 
of creatine kinase BB and α-enolase compared with age-
matched controls, while AD hippocampus yielded carbon-
ylated phosphoglycerate mutase 1, carbonic anhydrase II, 
triose phosphate isomerase (TPI), and α-enolase (Castegna 
et al. 2002a, b; Sultana et al. 2006a, b, c). In further stud-
ies, nitrated adducts of both α- and γ-enolase, TPI, and lac-
tate dehydrogenase were found in AD IPL, while nitrated 
α-enolase, phosphoglycerate-3-dehydrogenase (GAPDH), 
ATP synthase alpha chain, and voltage-dependent anion 
channel (VDAC) were found in AD hippocampus (Sultana 
et al. 2006a, b, c; Castegna et al. 2003). Redox proteomics 
of familial AD (FAD) found specific increased carbonyla-
tion of γ-enolase (Butterfield et al. 2006).

Furthermore, redox proteomics of MCI cortex and hip-
pocampus identified HNE-modified α-enolase as well as 
lactate dehydrogenase B (LDH-B), phosphoglycerate kinase 
(PGK), pyruvate kinase, and ATP synthase alpha chain 
(Reed et al. 2008). Nitration was observed of malate dehy-
drogenase (MDH), α-enolase, glucose-regulated protein 
precursor (GRP) and aldolase in MCI IPL, while α-enolase 
and MDH were found to be nitrated in MCI hippocampus 
(Sultana et al. 2007). Furthermore, protein carbonylation 
of α-enolase and pyruvate kinase M2 in MCI brain has also 
been reported (Butterfield et al. 2006). These findings of 
oxidatively modified proteins in MCI suggest that enzymes 
crucial to the normal functioning of energy metabolic path-
ways are affected in the early stages of AD, supplying evi-
dence that corroborates the PET imaging discussed.

Enolase and its isoforms, which were found to be modi-
fied in the majority of studies mentioned, is specifically 
important to note as not only does it play a large role in 
the second stage of glycolysis in glucose metabolism, but 
recent research indicates it has a pleiotropic role in many 
other non-glycolytic functions such as in cellular signal-
ing, activation of survival pathways, a neurotrophic factor, 
hypoxic stress protein, a transcription factor, and clearance 

of Aβ (Butterfield and Lange 2009; Takei et al. 1991; Aar-
onson et al. 1995; Subramanian and Miller 2000). As dis-
cussed above, oxidative insult to a protein involved in a 
large number of systems may have a pronounced negative 
effect downstream, whether that be energy metabolism or 
cell signaling.

Signaling, structure, and neurotransmission

The primary function of the brain is to communicate with 
itself and all other bodily systems, and consequently proper 
functioning of cellular signaling and neurotransmission is 
of the utmost importance for the maintenance of a healthy 
brain. Likewise, the ability of the neuron to maintain its 
internal integrity while retaining the ability to guide the 
growth cone and form new synapses also is important to 
overall neuronal health. However, redox proteomic inves-
tigations demonstrated that many enzymes and proteins 
involved in cellular subsystems such as growth, axonal 
guidance and integrity, and neurotransmission have been 
oxidatively modified in AD and MCI brain.

Protein carbonylation of glutamine synthase, dihydro-
pyrimidinase-related protein-2 also known as collapsin 
response mediator protein-2 (DRP-2 or CRMP2), and the 
pleiotropic α-enolase was observed in AD IPL, while car-
bonylation of the phosphorylation-specific peptidyl-prolyl 
cis/trans isomerase Pin1, CRMP2, α-enolase, and γ-SNAP 
was found in AD hippocampus when compared to age-
matched controls (Sultana et al. 2006a, b, c; Castegna et al. 
2002a, b). Being important in demonstrating that oxidative 
damage may have a significant impact on the ability of a 
protein to fulfill its normal function, this study also dem-
onstrated that enzyme activities of Pin1, enolase, and car-
bonic anhydrase were all decreased (Sultana et al. 2006a, 
b, c). The oxidation of CRMP2 is notable as it is heavily 
involved in the control of axonal growth and overall neu-
roplasticity, so its modification may well contribute to the 
loss of synaptic integrity observed in AD. Pin1 is a regula-
tory isomerase of whose loss is implicated in nearly every 
pathogenic hallmark of AD, and is directly involved in 
amyloid-β-precursor protein (AβPP) processing and the 
phosphorylation status of protein-tau (Ma et al. 2012). Pin1 
is also intricately involved in many stages of the cell cycle 
through direct contact with target proteins as well as indi-
rect action through the regulation of important kinases and 
phosphatases (Keeney et al. 2012; Driver and Lu 2010; Lin 
et al. 2015). We recently reported that the active site Cys-
113 residue is oxidatively modified to sulfonic acid in AD 
brain, and we posit that this modification may account for 
the decreased Pin1 activity we have observed in AD brain 
(Chen et al. 2015; Sultana et al. 2006a, b, c).

Carbonylation was not the only modification relating 
to signaling and structural proteins found in AD brain. 
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Secondary carbonylation, demonstrated by the identifica-
tion of HNE-modified proteins, was observed for CRMP2 
in AD hippocampus and α-enolase, and α-tubulin in AD 
cortex (Perluigi et al. 2009). In MCI hippocampus and cor-
tex, redox proteomic identification of protein-bound HNE 
was found to affect α-enolase, actin, translation initia-
tion factor-α, and elongation factor Tu, while experiments 
into the nitration of proteins in MCI hippocampus yielded 
nitrated CRMP2 (Reed et al. 2008; Sultana et al. 2007). 
Carbonylation of glutamine synthetase, Pin1, syntaxin-
binding protein I, carbonic anhydrase II, and mitogen-acti-
vated protein kinase I was likewise identified in MCI brain 
(Butterfield et al. 2006; Sultana et al. 2009). Interestingly, 
within the entorhinal cortex of AD brain, S-nitrosylation of 
cysteine residues was reported to modify CRMP2, alpha-
internexin, glutamate dehydrogenase, proenkephalin, 
proopiomelanocortin, α-enolase, glial fibrillary acidic pro-
tein (GFAP), and septin, which may suggest that glial cells 
around SPs present higher levels of nitrosylation of GFAP 
and may contribute to the pathogenesis of AD (Riederer 
et al. 2009).

Proteasome system and the oxidative response system

As discussed, oxidative insult to proteins mediated by free 
radicals is key in both normal aging and age-related dis-
eases, and the clearance of damaged peptides from the cell 
serves as protection from non-functioning proteins and/
or protein aggregation primarily due to the fact that most 
protein oxidation is non-reversible, aside from the action of 
carbonyl reductase (Perluigi et al. 2014). Left unchecked, 
protein oxidation may affect gene regulation and down-
stream protein expression, general cell signaling, apoptosis 
and necrosis, and protein turnover due to non- or dysfunc-
tional protein regulators, which subsequently may lead to 
cell death (Butterfield et al. 2012). Moreover, because of 
the structural changes that oxidative damage may cause, 
protein aggregation is a likely end product, and such aggre-
gation has been evidenced in neurodegenerative diseases 
such as amyotrophic lateral sclerosis with SOD1, Parkin-
son disease with α-synuclein, and AD with Aβ.

Two proteasome systems found to be important in AD 
pathology are the 20S proteasome and the 26S protea-
some. The 26S proteasome, also known as the ubiquitin–
proteasome system (UPS), degrades shortly lived or mis-
folded proteins (Forster et al. 2013). The target protein is 
first poly-ubiquitinylated through the concerted effort of 
E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating 
enzymes, and E3 ligases preceding the chaperone-mediated 
transport to the 26S proteasome complex for degradation. 
Just prior to entry, the enzyme ubiquitin carboxy-terminal 
hydrolase-1 (UCH L-1) cleaves the ubiquitin moieties from 
the target protein one at a time, allowing the target protein 

to be degraded and preserving an active pool of ubiquitin 
for cellular usage (Forster et al. 2013; Kleiger and Mayor 
2014).

The 20S proteasome is a ubiquitin-independent system 
and primarily degrades oxidatively modified, mutated, or 
aged proteins recognized by the 20S system due by the 
structural disorder inherent in the damaged proteins (Ben-
Nissan and Sharon 2014; Hwang et al. 2011; Pickering and 
Davies 2012; Jung et al. 2013). Additionally, the 20S pro-
teasome may degrade proteins which contain both intrin-
sically disordered regions (IDRs) and proteins containing 
intrinsically disordered sequences (IDPs) (Ben-Nissan and 
Sharon 2014; van der Lee et al. 2014; Dyson and Wright 
2005). This function is especially important with concern to 
IDPs, as many function as regulator and signaling proteins 
in cell cycle control, growth control, and oncogenesis, and 
proper control over their protein levels is needed to prevent 
development of disease (Dyson and Wright 2005; Aiken 
et al. 2011). Therefore, properly functioning proteasomal 
systems are vital to the health of a cell, and disturbance of 
these systems may trigger catastrophic events leading to 
cell death through loss of control or protein aggregation.

Using redox proteomics, we found that UCH L-1 was 
carbonylated in AD brain, specifically AD IPL, AD hip-
pocampus, and FAD IPL (Sultana et al. 2006a, b, c; But-
terfield et al. 2006; Castegna et al. 2002a, b). These results 
were corroborated by others who also found oxidatively 
modified Cu/Zn-superoxide dismutase (Choi et al. 2004). 
An oxidatively modified and dysfunctional UCH-L1 poses 
a threat to the cell as ubiquitinylated proteins cannot enter 
the proteasome without first having their ubiquitin moie-
ties hydrolyzed away from the ubiquitinylated protein. 
This bottleneck may lead to not only an accumulation of 
damaged and ubiquitinylated proteins and a loss of cel-
lular signaling control if important short-lived regulators 
are not kept in check, but also a depletion of the ubiquitin 
pool since the fixed amount of ubiquitin is not recycled for 
reuse (Kleiger and Mayor 2014; Castegna et al. 2002a, b). 
Chaperone proteins and proteins involved in the unfolded 
protein response were also found to be oxidatively modi-
fied. Heat shock cognate 71 (HSPA8) was identified as 
being both carbonylated and specifically nitrated in AD IPL 
and MCI hippocampus, respectively (Sultana et al. 2007; 
Castegna et al. 2002a, b). Heat-shock protein 70 (HSP70) 
was also reported to be carbonylated and HNE-modified 
in MCI brain (Reed et al. 2008; Sultana et al. 2009). Glu-
tathione-S-transferase Mu (GST-M) and multidrug-resist-
ant protein 3 (MRP3) were found to be nitrated in MCI 
IPL, while peroxiredoxin 6 (PR VI) was found nitrated in 
MCI hippocampus and HNE-bound in AD cortex (Perluigi 
et al. 2009; Sultana et al. 2007). Mn-SOD was found to be 
covalently modified by HNE in the AD hippocampus (Per-
luigi et al. 2009). GST, MRP-1, and GSH were all found to 
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be HNE-modified, and an increase in HNE protein adducts 
was reported (Lovell et al. 1998; Sultana and Butterfield 
2004). The proteasome itself has also been reported to be 
the target of oxidative injury as HNE, and neuroprostane 
conjugation was found in the brain of both MCI and AD 
tissues (Cecarini et al. 2007). We posit that the oxidation 
and modification of the aforementioned proteins, which 
play large roles in the defense against such oxidative insult, 
protein turnover/degradation, and protein folding, likely 
contribute to disease pathogenesis in the progression of 
AD.

Conclusion

Redox proteomics studies of human brain have provided a 
wealth of information in regard to the molecular progres-
sion of AD and MCI, as well as a number of other detri-
mental and degenerative diseases. Providing information 
about the molecular degeneration of the disease enables 
others more to use that knowledge to not only improve 
upon existing treatments, but develop new ones by target-
ing specific proteins key to AD progression, which have 
been found to be oxidatively modified and dysfunctional. 
Not only are eventual treatments an end goal, but the iden-
tification of potential protein biomarkers for the successful 
and early detection of AD and MCI are critical in delay-
ing AD onset among the coming tide of patients with AD 
dementia that are being predicted. Research has shown 
that by the time AD presents itself, much of the dam-
age has already occured, which makes the need for early 
biomarker identification an absolute necessity. Here, we 
have shown evidences from a multitude of studies dem-
onstrating that systems vital to the health of the brain are 
impaired by way of oxidative insult through ROS/RNS and 
reactive aldehyde-mediated conjugation. We posit that the 
damage to these proteins leads to deficiencies in systems 
important to the brain, such as energy metabolism, cell 
signaling, neurotransmitter release, and the proteasome, 
which may lead to the progression and pathogenesis of 
AD.
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