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Alzheimer's disease (AD) is a progressive neurodegenerative disorder
characterised by severe cognitive impairment that ultimately leads to
death. Current drugs used in AD are acetylcholinesterase inhibitors
and antagonists to the NMDA receptors. These drugs may only slightly
improve cognitive functions but have only very limited impact on the
clinical course of the disease. In the past several years, based on in vitro
and in vivo studies in laboratory animals, natural antioxidants, such as
resveratrol, curcumin and acetyl-L-carnitine have been proposed as alternative
therapeutic agents for AD. An increasing number of studies demonstrated
the efficacy of primary antioxidants, such as polyphenols, or secondary
antioxidants, such as acetylcarnitine, to reduce or to block neuronal death
occurring in the pathophysiology of this disorder. These studies revealed
that other mechanisms than the antioxidant activities could be involved in
the neuroprotective effect of these compounds. This paper discusses the
evidence for the role of acetylcarnitine in modulating redox-dependent
mechanisms leading to the upregulation of vitagenes. Furthermore, future
development of novel antioxidant drugs targeted to the mitochondria
should result in effectively slowing disease progression. The association
with new drug delivery systems may be desirable and useful for the
therapeutic use of antioxidants in human neurodegenerative diseases.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterised
by cognitive and memory decline, speech loss and personality changes, and it is
one of the major cause of admissions to nursing homes [1]. Several lines of
evidence have demonstrated clearly the importance of ncuroinflammation and
oxidative stress in the pathogenesis of AD. Among the major players involved in
neuroinflammation are: i) B-amyloid, which is responsible for the generation of
superoxide anion and o-carbon-centred radicals; ii) COX, which during its
catalytic cycle produces both free radicals and prostaglandins; and iii) inducible
nitric oxide synthase (iNOS), which is respensible for the formation of nitric
oxide (NO) and reactive nitrogen species (RNS) (241, All the above mentioned
pro-oxidant species contribure 1o the massive destruction of some brain areas, in
particular the entorhinal cortex and hippocampus in the early stage of AD. After
several ycars the damage spreads to the temporal, frontal and parietal cortex [5].
Furthermore, choline acetyltransferase has been found to be decreased by up to
90% in several brain arcas of patients with AD and this led to the hypothesis that
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the deficit in the cholinergic system is a main consequence
in AD [67. Current therapy for AD is based on the
administration of acerylcholinesterase inhibitors donepezil,
rivastigmine or galantamine and the NMDA open-channel
blocker memantine, but these drugs can only delay the
onger and development of dementia (8. Bearing
in mind the claimed pathogenic role of inflammation in
AD, the potential use of NSAIDs has, in the past, been
postulated (9. Unfortunately, although the results from
in wvitro studies were promising, clinical trials showed
that NSAIDs had no effect on AD Dol Recently, a new
therapeutic approach for the therapy of AD was proposed.
Bascd on the evidence that the heat-shock family of proteins
(Hsps) exerts neuroprotective effects against oxidative
stress-related injury and that nutritional antioxidants are
able to upregulate Hsps in many cell lines including
investigators proposed the administration of
nutritional antioxidants such as resveratrol, curcumin and
carnitine/L-acetyl-carnitine as ‘pathogenetic’ drugs in order
to counteract the oxidarive stress-induced brain damage in
AD 11,12). However, the bioavailability and pharmacokinetics
of these substances should be considered when the use of
these antioxidants is proposed.

neurons,

2. Alzheimer’s disease: why
consider antioxidants?

AD, which rarely occurs before the age of 50, usually
becomes clinically apparent as a subtly impaired cognitive
function or a disturbance of affect. With time there is
progressive memory loss and disorientation, which even-
tually progresses into dementia. Although most cases are
sporadic, 5 — 10% or more are familial [13,14. Gross
examination of the brain in AD shows a variable degree of
cortical atrophy with narrowed gyri and widened sulci most
apparent in the frontal, parietal and temporal lobes.
Microscopically, the features include neurofibrillary tangles,
neurite (senile) plaques, the central core of which is
amyloid-B peptide, derived from the transmembrane amyloid
precursor protein, amyloid angiopathy, granulovacuolar
degeneration and Hirano bodies 1151, The brain of an AD
patient has been reported to be under oxidative stress, and
this may play an important role in the pathogenesis and
progression of AD [16-18]. Amyloid-B peptide (1-42) has
been proposed to play a central role in the pathogenesis
of AD n6.19.. B-Amyloid-associated free radicals can initate
lipid peroxidation,
species (ROS) formation, intracellular and mitochondrial
Ca?* accumulation, and eventually lead to death of
neurons [20. A prediction of this model was that the
antioxidant vitamin E should prevent or modulate these
B-amyloid-induced effects to neurons [2022]. Several other
potential sources of oxidative stress were considered in the
pathogenesis of AD. First, the concentration of iron, a potent
catalyst of ROS generation, is increased in neurofibrillary

protein oxidation, reactive oxygen

tangle-bearing neurons 23.24]. Second, increased concentrations
of iron would result in increased protein modifications,
which are caralysed by meral ions and reducing sugars [25].
Third, microglial cells are activated and increased in AD,
and represent a major source of free radicals [26.271. Fourth,
a decrease of complex IV activity has been reported in the
cerebral cortex of individuals who died of AD [28). Whilst
the exact mechanism for this loss of activity is not clear, it is
known that this enzyme complex is particularly susceptible
to oxidative damage [29,30]. Recently, it has been shown that
brains from patients with mild cognitive impairment (MCI)
have increased protein oxidation and lipid peroxidation
wmparcd with H.gcd—mau_lu:d conuols [31,321. As MCI is
considered as the transition zone between normal cognition
and dementia in early AD, this finding suggests that
oxidative stress is fundamental to the progression of AD and
not simply a consequence of the disease. Therefore, it is
mandatory to develop biomarkers of oxidative stress in easily
accessible tssue in living individuals to learn more
about AD, to monitor drug efficacy, and to follow disease
progression. Recent evidence also suggests that NO and
RNS may directly or indirectly be invelved in neuronal
death in AD and MCI 14,33). There is also strong evidence to
suggest that both p21ras and p21ras-dependent MAP-kinase
pathways are strongly induced in AD, and an aberrant
expression of p21 is highly colocalised with an aberrant
expression of NOS in this condition (3435].

3. Resveratrol and Alzheimer’s disease

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) (Figure 1) is a
phytoalexin found in grapes, cranberries and peanuts (36,37].
Several in witre studies have shown that resveratrol is a
powerful molecule endowed with antioxidative, anticancer,
anti-inflammatory and estrogenic activities (36:38]. Studies in
rodents and humans have shown that after oral ingestion
resveratrol is readily absorbed (at least 50% in the rar),
reaching peak plasma concentration after 10 — 60 min of
up to 2 pM total resveratrol (ie., genuine resveratrol plus
resveratrol derived from the hydrolysis of its conjugated
products), whereas the amount of unchanged resveratrol is
in the low nanomolar range p640. In hepatc cells,
resveratrol has been absorbed by passive diffusion and
carrier-mediated processes [41]. Interestingly, the amount of
resveratrol adsorbed did not change in the presence of
ethanol [36). Resveratrol binds to plasma proteins such as
albumin and lipoproteins [i1]. The plasma half-life was
estimated to be 12 — 15 min in the rat and 9 — 12 h in
humans (3739]. Resveratrol undergoes massive metabolism
both in gastrointestinal cells and liver. The main metabolites
detected in humans are resveratrol monosulfate, resveratrol
monoglicuronide (two isomeric forms), dihydroresveratrol
monosulfate  and monoglicuronide [37.38]. The serum
half-life of these metabolites is ~ 9.2 h (i.e., significantdy
higher than that of unmodified resveratrol) [38.39] in both
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Figure 1. Chemical structures of trans-resveratrol, curcumin
and carnitine.

rodents and humans; enteric recirculation of resveratrol
metabolites has been proposed and may account for the
increased half-life of these metabolites with respect to the
unchanged form. Resveratrol, has been shown to inhibit
CYP3A4 irreversibly and to be a reversible inhibitor of
CYP2EI1 [38.42). Furthermore, in rat cardiomyocytes, resvera-
trol increased the activity of glutathione transferases, well
known Phase II enzymes involved in the detoxification of
drugs (431. Resveratrol is mainly excreted by the kidney and
only a small portion is recovered in faeces [36). It is noteworthy
to mention that in rodents and rabbits the tissue concentra-
tions of resveratrol are always below 1 nmollg fresh
tissue [36,44], whereas in humans the organs in which
resveratrol shows greater accumulation are intestinal mucosa,
stomach, liver and kidney, but the exact concentrations have
not been estimated (38).

The rationale to use resveratrol in the treatment of AD is
based on the well-known antioxidant activity of this
compound. Resveratrol has been shown to protect rat
glioma cells from B-amyloid toxicity by reducing the expres-
sion of iINOS and COX-2, thus preventing the uncontrolled
release of NO and prostaglandin E, (45]. These effects, could
be ascribed to the ability of resveratrol to prevent the
B-amyloid-induced nuclear translocation of NE-xB [45].
Furthermore, in PC12 cells, resveratrol counteracted the
B-amyloid, ;s-induced toxicity by the downregulation of
pro-apopmfic. factors such as Bax and c-Jun N-terminal
kinase proteins [46471. In rat hippocampal neuronal cell
cultures, resveratrol protected cells from B-amyloid roxic
effects by inducing protein kinase C [4648]. The neuro-
protective effect of resveratrol against B-amyloid toxic effects
could also be mediated by promoting the intracellular
degradation of B-amyloid through the ubiquitin proteasome
system  [49). Inrerestingly, resveratrol reduced sodium
nitroprusside-released NO toxicity in an experimental
system of rav hippocampal mixed neuronal/glial culwures (501,

In the rat, the chronic administration of resveratrol
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(21 days) resulted in a marked inhibition of the cognitive
impairment secondary to the intracerebroventricular
administration of streprozotocin, and this effect has been
related to the increase of brain glutathione levels [s1.

Still under investigation is the neuroprotective effect of
resveratrol through the overexpression of a family of proteins
called sirruins 6. The Sir2 (a NAD-dependent class III
histone deacetylase) homologs named Sirtl — 7, are involved
in the cellular protection against oxidative stress and belong
to the sirtuin family. In particular, Sirtl — 3, play a key role
in protecting neurons in AD parients by at least three inde-
pendent mechanisms: i) the repression of the pro-apoptotic
protein p53 and forkhead transcription factor 3 expression;
ii) the reduction of the hyperphosphorylation of T protein;
and iii) the reduction of ROS formation through the
interaction with the uncoupling protein 4 (52

Of note is the interaction of resverawol with the
vitagenes. The term vitagenes refers to a group of genes that
are strictly involved in preserving cellular homeostasis
during stress conditions. 'L'he vitagene family is composed of
the Hsps haem oxygenase-1 (HO-1), Hsp70 and by the
thioredoxin (Trx) system (53551, HO-1, also referred to as
Hsp32, degrades haem, which is toxic if produced in excess,
into ferrous iron, carbon monoxide and biliverdin (BV). BV
is the precursor of bilirubin, a linear tetrapyrrole that
has been shown to effectively counteract oxidative and
nitrosative stress, due to its ability to interact with ROS, NO
and RNS [3.:56-59]. Hsp70 is a functional chaperone and acts
by inhibiting key effectors of the apoptotic machinery (53,56
Tinally, Trx is responsible for the reduction of protcin
disulfide bonds whereas Trx reductase serves to maintain Trx
in a reduced form (53. Recendy, resveratrol has been
demonstrated to increase the expression of HO-1 in PC12
cells and primary neuronal cultures, presumably through the
activation of NF-E2-related factor 2 (Nrf2) in PCI12
cells [60,61). Although not directly related to AD, these data
are in good agreement with previous papers, which demon-
strate how the overexpression of HO-1, and the related
increase in antioxidant capacity, is neuroprotective in several
models of ATD. Indeed, Takahashi et 2/ found that corrical
neurons cultured from mice expressing the Swedish
mutation of AD had defects in bilirubin production with
subsequent increases of hydrogen peroxide rtoxicity [62.
Furthermore, in transfected neuroblastoma cells
expressing HO-1, the activity of this enzyme was increased,
and conversely, the level of T protein was significantly
decreased when compared with antisense HO-1 or vector
transfected [631. The
expression was almost completely counteracted by zinc
deuteroporphyrin, 2 specific inhibitor of HO activity 63].

over-
cells

suppression of T protein

4. Curcumin and Alzheimer’s disease

Curcumin  (1,7-&zs[4-hydroxy phenyl]-1,6-
heptadiene-3,5-dione) (Figure 1) is a phenolic compound

3-methoxy
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extracted from the rhizome of Cureuma longa Linn.
(family Zingiberaceae) and it is commonly used in the Asian
continent, in particular India, as a spice to colour and
flavour food. Furthermore, taditional Indian medicine
considered curcumin to be an effective drug on several
disorders including anorexia, coryza, cough, hepatic diseases
and sinusitis (6465 Recently, several studies reported on
anti-inflammatory, anticarcinogenic  and
activities of this compound. The potental prophylactic
or therapeutic use of curcumin in human diseases has,
therefore, been proposed (66-70]. Following ingestion, almost
40 — 80% of curcumin is unaltered in the gastrointestinal
tract [64]. However, curcumin undcrgnr.s marked ﬁl’st—pass
metabolism, which limits its systemic bioavailability (~ 60%)
as demonstrated in humans and rodents [71-73]. Interestingly,
in order to increase its bioavailability, the co-administration
of curcumin with piperine or its complexation with
phospholipids to form a curcumin—phospholipids complex
have been proposed [71,74,75]. Preclinical studies have shown
that the administration of curcumin 1 gfkg to the rat
allows the polyphenol to reach plasma concentrations of
around 0.5 pg/ml; on the other hand, patients affected
by malignant or premalignant conditions of the bladder,
skin, cervix, stomach or oral mucosa, treated with high-dose
curcumin (0.5 — 8 g/day for 3 months) had a plasma
concentration of 1.75 = 0.8 pM [71.76. In the rat, the
volume of distribution, which reflects the abilicy of a
drug to bind ro tssues or plasma proteins (ie., a larger
volume means the accumulation of the drug in tissues and
vice versa) of curcumin is — 190 1, thus suggesting thac

anti-infectious

this polyphenol may accumulate in many organs including
colorecral tissue, liver and brain [71,74.77]. Studies in rodents
and humans demonstrated that, after oral dosing, curcumin
is conjugated to curcumin glicuronide and curcumin sulfate
as well as reduced into dihydrocurcumin, rtetrahydro-
curcumin, hexahydrocurcumin, octahydrocurcumin  and
hexahydrocurcuminol [64,78,79]; curcumin, dihydrocurcumin
and tetrahydrocurcumin can be further converted in
monoglicuronide conjugates (7880]. These metabolic changes
seem to occur not only in the liver, the main organ deputed
to biotransformation but also in the intestinal tract [64,79].
Interestingly, the metabolism of curcumin generates products
such as tetrahydrocurcumin, which retains ant-inflammatory
activity comparable to that of the parental compound (64,79].
In rodents and humans, inhibited CYP
isoforms as well as other detoxifying enzymes such as
glutathione
diphosphate (UDP)-glucuronosyltransferases, therefore, the
ingestion of this spice may alter the metabolism of several
drugs thus increasing their plasma concentrations and
originating poremial toxic effects 81-84]. In the rat, curcumin
is mainly excreted into the bile and then eliminated in the
facces, only a little amount is climinated in the urine [72,73)
and the half-life of climination is ~ 1.5 h [74]. The urinary
elimination of curcumin and its metabolites seems to be

curcumin

transferases and  gastrointestinal  uridine

increased if curcumin is administered at large doses (e.g.,
3.6 g/day for up to 4 months) [71.85. With regard to the
toxiciry profile of curcumin, studies in rodents and primares
have shown that the spice at doses of up to 3.5 g/kg body
weight administered for up to 3 months were well tolerated
by the animals (711. In humans, curcumin at doses ranging
from 2.1 t 8 g/day for up to 3 months did not initiate any
toxic effect (76.86]. However, patients affected by advanced
colorectal cancer treated with curcumin at 3.6 gf/day
developed diarrhoea whereas the dose of 0.9 g/day was
associated with nausea, which resolved spontaneously. In the
same patients, blood test abnormalities, such as a rise in
serum  alkaline  phosphatase and  lactate  dehydrogenase,
correlated with curcumin administration, but the possibility
that they derived from the progression of cancer rather than
curcumin toxicity cannot be excluded 71,851.

The first evidence of a protective role of curcumin in
the onset of AD was derived from epidemiological studies.
Ganguli and colleagues reported that the Indian population,
who have a curcumin-enriched dict, has a reduced
prevalence of AD compared to the US population [s7.
Following this initial observation, many basic studies were
conducted and the neuroprotective role of curcumin was
corroborated. fn vitro studies have shown that curcumin
protects neuron-like PC12 cells from B-amyloid toxicity
and, interestingly, the polyphenol displayed a neuroprotective
effect greater than a well-known antioxidant such as
o-tocopherol (88). By using an Alzhcimer transgenic APPSw
mouse model (Tg2576), Lim and colleagues have shown
that  dictary suppressed
oxidative damage in the brain of these mice 891, More
recently, Garcia-Alloza ez @l demonstrated in transgenic
APPswe/PS1dE9 mice that curcumin, given intravenously
for 7 days, crosses the blood-brain barrier, binds to
B-amyloid deposits in the brain and accelerates their rate
of clearance [77.. These latter results are in agreement
with previous findings, which showed that curcumin
disaggregates and inhibits B-amyloid aggregation [90,91),

Similarly to resveratrol, curcumin is a pleiotropic agent

curcumin inflammation and

with multiple molecular targets and biological activities [92,93].
Curcumin has been described as an exceedingly potent
direct antioxidant [94. In addition, the upregulation of
Nrf2-dependent gene expression is among the consequences
of exposure to curcumin [95]. Because Nrf2-dependent genes
encode for cytoprotective proteins (e.g., NQOI1, HO-I,
glutathione  transferases,  UDP-glucuronosyltransferases,
thioredoxin reducatase) that detoxify oxidants and provide
protection against oxidative stress, it is also possible to refer
to curcumin also as a secondary antioxidant. Compounds
such as curcumin (which possess both direct primary as
well as indirect secondary antioxidant activity) have
been designated as bifunctional antioxidants and could
provide two levels of protection: 1) instantaneous via
dircct scavenging of oxidants; and ii) long lasting via
induction of cytoprotective proteins [9¢]. Importantly, the
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indirect antioxidant activity through the induction of
Nrf2-dependent genes is caralytic, long lasting (several days)
and ul‘llikely to have pm‘nxidanr effects (971

5. Carnitines and Alzheimer’s disease

L-carnitine (LC) (Figure 1) is a natural compound and
its biological role is to facilirate the transport of farty acids
to the mitochondria. Dietary LC derives from the intake
of red meats but the endogenous synthesis of LC [rom
the amino acid precursors lysine and methionine has been
also documented (98). The dietary intake of LC in humans
ranges from 1 to 15 pmollkg body weight/day. whereas
the rate of biosynthesis is ~ 1 — 2 umol/kg body
weight/day (99). Recently, exogenous LC, given by oral (p.o.)
or intravenous (i.v.) routes, has been used for the treatment
of cognitive disorders such as AD and dementia [98). After
oral ingestion, dietary LC is well absorbed by simple or
carrier-mediated diffusion and its bioavailability is 54 — 86%;
conversely, the bioavailability of exogenous LC is much
lower, in the range of 5 — 18% (98,99). This paradoxical effect
can be explained considering that the absorption of LC
decreases as the intake of LC increases, thus keeping the
concentration of LC constant (9899). The normal plasma
concentration of LC in healthy adults with a mixed diet
is 40 = 50 pM ps,100. When administered ar doses of
30 — 100 mg/kg p.o. in humans, LC peak plasma concen-
trations were 27 — 91 uM after 3 h, and returned to the
bascline within 24 h 99,101, LC undergoes acetylation in
rodents and the human intestine thus forming esterified
compounds such as ALC, which is endowed with biological
activity per se. Interestingly, ALC diffuses across membranes
much better than LC and its efflux in the systemic circula-
tion has been calculated to be four-times greater than that
of LC 9102, Data from AD patients have shown that
after supplementation with pharmacological doses of ALC
(2 g/day) for 55 days, its plasma concentrations increased
from 7.2 to 10.3 uM [99]. In the plasma, neither LC nor
ALC are bound to proteins p8]. The volume of distribution
of LC differs considering the dictary or exogenous source
being ~ 3000 1 and 20 — 50 I, respectively [98). This great
difference in the volume of distribution between dietary and
supplemental LC depends on the different degree of absorp-
tion, slow accumulation in tissues such as the muscle and
rate of kidney elimination (see below) and, therefore, these
numbers should be considered purely indicative (98). It is
interesting to note that ALC is able to cross blood-brain
barrier; as shown by Parnetti et 2l AD patients treated
with ALC iv. or p.o. for 10 — 60 days have an increased
concentration of ALC in the cerebrospinal fluid of up to
3.55 nmol/ml [103). In human subjects treated with LC Lv.
its elimination half-life ranged from 3 to 12 h 198]. However,
due to the long-lasting release of LC by the muscle, the
total time of turnover from the body has been estimated
to be 66 days 199). LC is metabolised by the intestine to
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Y-butyrobetaine and trimethylamine, the former excreted in
the facces and the latter in urine [98.99]. Accordingly, the
renal clearance of LC, which is ~ 1 — 3 ml/min,
suggesting an extensive rate of tubular reabsorption, signifi-
cantly increases at values close to the creatinine clearance
with the increase in LC plasma concentrations indicating
that tubular reabsorption approaches full saturation (981 This
last finding is very important and contributes to the explain-
ation of how exogenous LC is almost completely excreted
during the first 12 h after administration, whereas dietary
LC is reabsorbed [98]. Due to its elimination mainly through
the kidney, LC should be administered very carefully to
patients affected by renal impairment [104].

ALC has been proposed to have beneficial effects in
preventing the loss of brain function, which typically occurs
during ageing and neurodegenerative disorders. The main
mechanism of action of ALC is the improvement of
mitochondrial respiration, which allows the neurons to
produce the necessary ATP to maintain the normal
membrane potential [105), However, ALC has been shown to
be neuroprotective through a variety of other effects, such as
the increase in protein kinase C activity [105]. Interestingly
ALC counteracted the loss of NMDA receptors in the
neuronal membrane and increased the production of neuro-
trophins, two effects strictly related to synaptic plasticity r10s).
Recent studies have shown that ALC reduces B-amyloid
toxigity in primary cortical ncuronal cultures by increasing
both HO-1 and Hsp70 expression [106]. Studies in rats have
shown that chronic ALC treatment increases lifespan,
improves cognitive behaviour in aged animals and guarantees
long-term memory performance (10s]. Furthermore, chronic
ALC treatment has been shown to prevent age-related
changes in mitochondrial respiration and decreases oxidative
stress biomarkers thmugh the upregulatinn of HO-1, Hsp70
and superoxide dismutase-2 in senescent rat [107). Taken
together, these preclinical studies suggested that ALC
treatment could be beneficial for the treatment of age-related
discases and the potential use in humans has been encouraged.
Patients affected by AD and treated with ALC at doses
ranging from 1 to 2 g/day for 6 — 12 months have shown
an improved performance on several cognitive tests such as
word recognition, name learning and world list recall
with respect to placebo-treated patients, but none of these
effects were significant [105,108]. In two clinical studies, ALC
3 glday for 1 year significantly reduced cognitive decline in
carly-onset AD patients [109-111]. Consistently, the authors
have demonstrated that acetylcarnitine induces HO-1 in a
dose- and time-dependent manner and that this effect
was associated with the upregulatdon of other Hsps as
well as high expression of the redox-sensitive transcription
factor Nrf2. The results from this study show for the
first time that acetylcarnitine induces HO-1 and Hsp60
heat-shock proteins, and that this effect may involve
the transcription factor Nrf2, implying the conceivable
possibility that acetylcarnitine, by promoting the acetylation
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of DNA-binding proteins, can induce post-translational
modifications of critical target proteins endowed with DNA
comperence and transactivating activity 1112, Importandy,
this new envisioned role of ALC as a molecule endowed
with the capability of potentating the cellular stress response
pathways scems to provide an alternative therapeuric
approach for those pathophysiological conditions where
the stimulation of the HO pathway is warranted, such as
in AD ma.

6. Expert opinion

Unfortunarely, AD  currently remains an incurable
neurodegencrative disorder and the drugs now available for
wreatment do not counteract or significantly delay the
progression of the disease. Current treatment for AD is
based on the use of acetylcholinesterase inhibitors (donepezil,
rivastigmine, galantamine) and NMDA recepror antagonists
(memantine) alone or in association []. By reducing the
degradation of acetylcholine by acerylcholinesterase, acetyl-
cholinesterase inhibitors increase the concentration of this
neurotransmitter in the synaptic cleft and, therefore,
contributes to the improvement or delay of the cognitive
impairment in patients with mild-to-moderate AD (s].
Memantine slowed the cognitive and functional decline in
patients affected by moderate-to-severe AD and its
co-administration with donepezil was much more effective
than donepezil alone (8,113).

The potential use of natural antioxidants in the therapy
of AD has been proposed. In fact, these substances protect
from free-radical induced damage by several
mechanisms including a direct scavenging effect, the upregu-
lation of protective genes/proteins and/or the downregulation
of potentially damaging ones. However, despite the unques-
tionable protective activity in several in vitro models, clinical
studies demonstrated only minimal effect in humans and
this was related to the pharmacokinetics of these substances.
In fact, the bioavailability of exogenous resveratrol and
curcumin ranges from 20 to 50% and the plasma concentra-
tions are around 2 pM 37711, For instance, it has been
calculated that in order ro take a therapeutic dose of 25 mg
of resveratrol, it would be necessary to drink 25 glasses of
red wine/day [64. How would the ‘potential’ therapeutic
cffects of resveratrol reconcile the ‘well known’ toxic effects
of ethanol? Furthermore, it is difficult to estimate the
concentrations in tissues, which has been shown to be in the
nanomolar range and much lower than those used in wvitro.
On the contrary, the pharmacokinetic parameters for
LC/ALC are not as limiting and the plasma/tissue
concentrations are higher than those of polyphenols.
However, it is important to consider that exogenous

cells

rrearment  with LC/ALC results in plasma lower than
expected carnitine concentrations, due to saturable reabsorp-
tion by the kidney [9s]. Another important point to be
stressed are the effects on Phase I and II detoxification
enzymes. The inhibition of CYP isoforms by resveratrol and
curcumin may have deleterious effects on the metabolism of
other drugs taken concomitantly and this should be consid-
ered especially because older people have an age-related
decline in liver function and might be taking many more
drugs than younger people for chronic diseases [35.42,81-84].
In fact, through the inhibition of CYP3A4, resveratrol
may alter the metabolism of terfenadine, cisapride and
astemizole, commonly used drugs, thus increasing the risk of
developing life-threatening ventricular arrythmias (38.114).
Taken together, the potential beneficial effects of natural
antioxidants cannot justify the actual risk of severe side
effects as well as the milder possibility of a ‘no effect’.
A possibility that could be addressed in the future is to
modify natural antioxidants and increase their absorprion
and bioavailability. Maiti ef @/ have shown that, in the rat,
the complexation of curcumin with phospholipids improved
the pharmacokinetic parameters of this substance [74].
However, even in this case, the procedure necessary to
perform all the preclinical and clinical studies could be
quite long. Critcally, in order to reach this goal, an acrive
collaboration among chemists, pharmacologists, neurclogists
and general physicians is mandarory.

Stimulation of various maintenance and repair pathways
through exogenous interventions (mild stress or compounds
targeting the heat shock signal pathway), such as ALC,
may have biological significance as a novel approach to
delay the onset of various age-associated disorders (541,
opening intriguing perspectives with a possible impact
on cell survival during times of oxidative stress, hence
contributing to the activation of cell life programmes and
to the extent of cellular stress tolerance and resistance to
AD pathogenic noxa. Notably, by maintaining or recovering
the activiry of vitagenes (54) it is possible to delay the ageing
process and decrease the of age-related
diseases with resulting prolongation of a healthy lifespan.
Furthermore, future development of novel antioxidant
drugs rtargeted to the mitochondria should resulc in
effectively slowing disease progression. The association
with new drug delivery systems may be desirable and
useful for the therapeutic use of antioxidants in human
neurodegenerative diseases.
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