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A B S T R A C T

Chemotherapy-induced cognitive impairment (CICI) is a quality of life-altering consequence of chemo-
therapy experienced by a large percentage of cancer survivors. Approximately half of FDA-approved anti-
cancer drugs are known to produce ROS. Doxorubicin (Dox), a prototypical ROS-generating chemotherapeutic
agent, generates superoxide (O2

−•) via redox cycling. Our group previously demonstrated that Dox, which
does not cross the BBB, induced oxidative damage to plasma proteins leading to TNF-α elevation in the
periphery and, subsequently, in brain following cancer chemotherapy. We hypothesize that such pro-
cesses play a central role in CICI. The current study tested the notion that O2

−• is involved and likely
responsible for Dox-induced plasma protein oxidation and TNF-α release. Addition of O2

−• as the potas-
sium salt (KO2) to plasma resulted in significantly increased oxidative damage to proteins, indexed by
protein carbonyl (PC) and protein-bound HNE levels. We then adapted this protocol for use in cell culture.
Incubation of J774A.1 macrophage culture using this KO2-18crown6 protocol with 1 and 10 μM KO2 re-
sulted in dramatically increased levels of TNF-α produced. These findings, together with our prior results,
provide strong evidence that O2

−• and its resulting reactive species are critically involved in Dox-
induced plasma protein oxidation and TNF-α release.

© 2015 Elsevier Ireland Ltd. All rights reserved.

Introduction

More than half of the FDA approved anti-cancer drugs are known
to cause reactive oxygen species (ROS) production [1]. Doxorubi-
cin (Dox) is a quinone containing antineoplastic anthracycline used

commonly in multi-drug chemotherapy regimens primarily to treat
solid tumors [2]. Dox, a prototypical ROS-producing chemothera-
peutic agent, in the presence of molecular oxygen, generates the
reactive superoxide radical anion (O2

−•) via redox cycling of the
quinone moiety [3–7]. Our group has demonstrated that Dox-
induced oxidative damage to plasma proteins in vivo induces the
elevation of the inflammatory cytokine, tumor necrosis factor-
alpha (TNF-α), in the periphery [1,2,8]. TNF-α crosses the blood–
brain barrier (BBB) via receptor-mediated endocytosis resulting in
central nervous system toxicities including further TNF-α eleva-
tion in brain, oxidative and nitrosative damage to key biomolecules,
mitochondrial dysfunction, and neuronal death [8–13].

O2
−• is considered a key reactive radical generated within the cell

leading to protein oxidation, lipid peroxidation, and hydrogen per-
oxide (H2O2) and hydroxyl radical (•OH) production that can further
damage biomolecules [14–17]. The goal of this study was to deter-
mine if O2

−• produces oxidative protein damages in plasma and
TNF-α elevation in macrophages similar to that observed follow-
ing Dox administration in order to further elucidate the mechanisms
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by which Dox may cause chemotherapy-induced cognitive impair-
ment (CICI), despite the inability of Dox or its major metabolite to
cross the BBB. Previously, our laboratory demonstrated that Dox-
induced oxidation of apolipoprotein A-I (ApoA-I) in J774.A1
macrophage culture led to increased TNF-α production [2].

To accomplish this goal, O2
−• was added to plasma samples from

wild-type (WT) mice in the form of potassium superoxide salt (KO2)
in an appropriate solvent including an 18crown6 stabilizer [14,18,19],
and oxidative stress parameters, protein carbonyl (PC) and protein-
bound 4-hydroxy-2-trans-nonenal (HNE), were measured. PC levels
serve as a measure of protein oxidation, while protein-bound HNE
is a lipid peroxidation product that damages proteins [20,21]. The
O2

−• protocol we developed for our plasma experiments was then
adapted for use in macrophage cell culture to determine if O2

−•
induces Dox-like TNF-α consequences.

Methods and materials

Chemicals

Chemicals, proteases, protease inhibitors, and antibodies used in this study were
purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise noted. Preci-
sion Plus Protein™ All Blue Standards, BCA reagents, and nitrocellulose membranes
were purchased from Bio-RAD (Hercules, CA, USA).

Statistical analysis

All data are presented as mean ± SEM. Statistical analyses were performed using
ANOVA (and Bonferroni’s multiple comparison post-test) followed by a two-tailed
Student’s t-test to make individual comparisons between groups where appropri-
ate, with p < 0.05 considered significant. Normality of data sets was tested using the
D’Agostino & Pearson omnibus normality test where appropriate.

Animals

All procedures using animals were performed according to the protocols ap-
proved by the University of Kentucky Animal Care and Use Committee. Wild-type,
male, SKH1 hairless, albino mice (2–3 months old) were purchased from the Jackson
Laboratory. Mice were kept under standard conditions housed in the University of
Kentucky Animal Facility, and all experimental procedures were approved by the
Institutional Animal Care and Use Committee of the University of Kentucky. These
animals were euthanized and blood and tissues collected for molecular or biochem-
ical analysis. Whole blood collected by cardiac puncture was immediately collected
in EDTA tubes and plasma immediately separated by centrifugation.

Sample preparation

Protein estimation was performed using the bicinchoninic acid (BCA, Pierce) assay.
Homogenized plasma samples were diluted according to initial protein estima-

tion results using 20 μg sample in isolation buffer [0.32 M sucrose, 2 mM EDTA, 2 mM
EGTA, and 20 mM HEPES pH 7.4 with protease inhibitors, 0.2 mM PMSF, 20 μg/mL
trypsin inhibitor, 4 μg/mL leupeptin, 4 μg/mL pepstatin A, and 5 μg/mL aprotinin].

Slot blot assay

The slot-blot method was used to determine levels of protein carbonyl and protein-
bound HNE in plasma as previously described [2,22]. For protein carbonyl
determination, samples were derivatized with 2,4-dinitrophenylhydrazine (DNPH).
For protein-bound HNE, samples were solubilized in Laemmli buffer. Protein (250 ng)
from each sample was loaded onto a nitrocellulose membrane in respective wells
in a slot-blot apparatus (Bio-Rad) under vacuum. Nitrocellulose membranes were
blocked in 3% bovine serum albumin (BSA) in PBS with 0.2% (v/v) Tween-20 for 1.5 h
and then incubated in primary antibody (anti-dinitrophenylhydrazine primary or
anti-protein-bound HNE, respectively, each produced in rabbit, Sigma-Aldrich) for
2 h, washed three times in PBS with 0.2% (v/v) Tween-20 and then incubated for
1 h with secondary antibody (goat anti-rabbit secondary linked to alkaline phos-
phatase). Nitrocellulose membranes were developed with 5-bromo-4-chloro-3-
indolyl-phosphate (BCIP) dipotassium and nitro blue tetrazolium (NBT) chloride in
alkaline phosphatase activity (ALP) buffer, dried, and scanned for analysis. Image anal-
ysis was performed using Scion Image (Scion Corporation, Frederick, MD).

Solvent selection and potassium superoxide solution preparation

KO2 is a yellow solid that reacts readily with water and decomposes if exposed
to water vapor or carbon dioxide in air. To avoid this, a saturated solution of KO2

was prepared fresh, according to the method previously described [14,18,19], in a
solvent of anhydrous dimethyl sulfoxide (DMSO) containing 200 mM crown ether

(18crown6) to aid in solubility. To the prepared solvent, excess KO2 was added and
the KO2 concentration estimated by UV-vis absorbance and using Beer’s law [18,23].
A saturated solution of KO2 was approximately 250 μM under the stated condi-
tions. Serial dilutions of this saturated solution were performed using the
DMSO+18crown6 solvent to obtain the desired O2

−• concentrations.

Plasma oxidation with potassium superoxide

KO2 in a solvent of DMSO containing 18crown6 was added to plasma from WT
mice (2–3 months old WT, male, SKH1 hairless, albino mice purchased from the
Jackson Laboratory) and incubated at 37 °C for 0, 15, 30, and 90 min. Concentra-
tions of 0, 0.1, 1.0, or 10 μM KO2 made using serial dilution were added to plasma
to broadly encompass Dox concentrations used in previous studies. The solvent, DMSO
containing 18crown6, was added to all control incubations.

Macrophage stimulation with potassium superoxide

Cell culture experiments were carried out using mouse BALB/c monocyte mac-
rophage cell line (J774A.1) collected from murine blood. The mouse macrophage cell
line J774A.1 (American Type Culture Collection) was cultured in Dulbecco’s modi-
fied Eagle’s medium supplemented with 10% (v/v) fetal bovine serum, streptomycin
(100 μg/mL), and penicillin (100 U/mL). All cultures were incubated at 37 °C in a hu-
midified atmosphere with 5% CO2. J774A.1 macrophage cells were plated at a density
of 5 × 105 cells/well in 48-well plates. J774.A1 macrophages were seeded onto a 48-
well plate at 5 × 105 cells/well and allowed to grow overnight under standard culture
conditions. KO2 was prepared as described above. Preincubation of solvent, lipo-
polysaccharide (LPS; 1 μg/mL), KO2 (0.1 μM; 1 μM; 10 μM) for 1 h was performed
before their addition to J774.A1 macrophages. Lipopolysaccharide (LPS; 1 μg/mL) or
KO2 (0.1 μM; 1 μM; 10 μM) was added and the cells were incubated for 24 h and
compared with cells incubated in media only and cells incubated in media contain-
ing DMSO + 18crown6 vehicle. The supernatant was collected and levels of TNF-α
(pg/mL) were determined with a specific ELISA kit for mouse TNF-α (R&D Systems).

Results

Protocol development

A variety of solvents and combinations were explored to make
a stable solution of KO2. KO2 releases O2

−• upon addition to an
aqueous environment [14]. O2

−• then reacts rapidly with water
present in any solvent combination forming H2O2. In this study, the
reaction of KO2 with water was more rapid and vigorous than ex-
pected. In fact, KO2 reacted with water vapor in the air during any
attempt at weighing KO2, contrary to some methods describing stan-
dard weighing preparation or preparation in a water-based solution
[24,25]. Transition metals are known to influence the reactivity of
dioxygen radicals including those present in O2

−• [26] . Chelex
removal of metal ions did not prevent this problem [27], and prior
addition of catalase to the solvent only accelerated the reaction of
KO2 with water presumably by reacting away the formed H2O2 and
shifting the reaction equilibrium toward product [28–30]. This
prompted the pursuit of a suitable anhydrous solvent for KO2. KO2

is slightly soluble in anhydrous DMSO [31]. A crown ether, 18crown6,
was used to enhance solubility and stability [19].

Plasma oxidation from potassium superoxide

Plasma samples were treated with 0, 0.1, 1.0, or 10 μM KO2 for
0, 15, 30, and 90 min and analyzed via slot blot to determine rel-
ative levels of PC and protein-bound HNE as measures of protein
oxidation and lipid peroxidation, respectively [20,21]. PC damage
to protein in plasma following incubation with KO2 was rapid. Using
10 μM KO2, PC levels for each successive time point were signifi-
cantly elevated over the previous one indicated by Bonferroni’s
Multiple Comparison Test. After 15 min incubation at 37 °C, signif-
icant increases in PC were observed at 0.1, 1, and 10 μM KO2 (Fig. 1a,
***p < 0.005, ***p < 0.005, and **p < 0.01, respectively). Significant in-
creases in PC in plasma were also observed at each concentration,
0.1, 1, and 10 μM, of KO2 measured after 15 min incubation at 37 °C
(Fig. 1b, ***p < 0.005, ***p < 0.005, and **p < 0.01, respectively). Similar
experiments were performed to assess KO2-induced protein-bound
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HNE in plasma. Protein-bound HNE was significantly elevated after
30 and 90 min incubations with 10 μM KO2 at 37 °C (*p < 0.05,
#p < 0.001, respectively) (Fig. 1c). Protein-bound HNE levels were
not significantly elevated at the KO2 concentrations tested for the
15 min incubation at 37 °C. Significant increases in protein-bound
HNE levels were seen after 30 min incubation at 37 °C with the
10 μM KO2 concentration (*p < 0.05) and after 90 min incubation at
37 °C with the 1 μM and 10 μM KO2 concentrations (*p < 0.05,
#p < 0.001, respectively) (Fig. 1d). The higher concentrations of KO2

and longer incubation times were required to reach significant in-
creases in protein-bound HNE following KO2 addition (Fig. 1c and
d). Decisions for moving forward were based on these prelimi-
nary KO2 dose–response results with varied incubation times.

Superoxide induces TNF-α elevation in macrophage culture similar to
that seen following doxorubicin administration

Previously, we reported TNF-α elevation in plasma or mac-
rophage culture following Dox treatment and O2

−• produced

through redox cycling of Dox as the likely cause [2,10]. Our group
also demonstrated in a cross-over human clinical study that
TNF-α and soluble TNF-α receptor levels are elevated in human
plasma following i.v. Dox administration [32]. Macrophages
are a principal source of TNF-α production in vivo [33–35], and
microglial activation in brain following Dox-induced TNF-α
elevation leads to the previously mentioned central nervous system
toxicities [24,33]. Here, we test our hypothesis that O2

−•, adminis-
tered as KO2, will lead to TNF-α elevation in macrophage culture
similar to that observed following Dox administration [2]. Signifi-
cantly increased TNF-α elevation in J774.A1 macrophage culture
after incubation with KO2 for 24 h was observed. TNF-α was
increased in these cell lines following incubation with 1 and
10 μM KO2 (***p < 0.0001) (Fig. 2). Incubation of these mac-
rophages with the 10 μM KO2 concentration resulted in TNF-α
greater than treatment of the cells with lipopolysaccharide (LPS;
1 μg/mL), a known initiator of TNF-α transcription via nuclear
factor κ-light-chain enhancer of activated B cells (NF-κB) (Fig. 2)
[36–41].

Fig. 1. Protein carbonyl (PC) and protein-bound HNE (HNE) are measures of protein oxidation and lipid peroxidation. (a) PC levels were assessed at 15, 30, and 90 min in-
cubations with 10 μM KO2 at 37 °C. All incubation times tested at 10 μM KO2 and 37 °C, 15, 30, and 90 min, resulted in significantly increased PC compared to solvent alone
(**p < 0.01, ##p < 0.0001, ##p < 0.0001, respectively). PC for each successive time point at 10 μM KO2 was significantly elevated over the previous one indicated by Bonferroni’s
Multiple Comparison Test. (b) Significant increases in PC were observed at 0.1, 1, and 10 μM KO2 after 15 min incubation at 37 °C (***p < 0.005, ***p < 0.005, and **p < 0.01,
respectively). (c) Protein-bound HNE was significantly elevated after 30 and 90 min incubations with 10 μM KO2 at 37 °C (*p < 0.05, #p < 0.001, respectively). (d) Protein-
bound HNE levels were not significantly elevated at the KO2 concentrations tested for the 15 min incubation at 37 °C. Significant increases in protein-bound HNE levels
were seen after 30 min incubation at 37 °C with the 10 μM KO2 concentration (*p < 0.05) and after 90 min incubation at 37 °C with the 1 μM and 10 μM KO2 concentrations
(*p < 0.05, #p < 0.001, respectively).
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Discussion

Prior studies by our laboratory implicated O2
−•, produced in vivo

via the redox cycling of the chemotherapeutic agent Dox, in in-
creased oxidative damage to plasma proteins, elevation of TNF-α
in the periphery, followed by transfer of TNF-α to brain and further
TNF-α elevation in the parenchyma. Subsequent CNS toxicity in-
cluding mitochondrial dysfunction and neuronal death was observed,
and we suggest such processes are involved in CICI [1,2,8–13,42].
The quinone moiety within the molecular structure of Dox cycles
between the quinone and semi-quinone, producing superoxide free
radical from molecular oxygen as it cycles back to the quinone
[2–5,42]. The current study was undertaken to test the plausibili-
ty of our hypothesis that O2

−• from Dox is responsible for oxidative
protein damage, TNF-α elevation, and cognitive consequences ob-
served following chemotherapy with ROS-producing anti-cancer
drugs, like Dox, that do not cross the BBB but result in these un-
wanted clinical signs and symptoms.

In the current study, superoxide caused oxidative damage to
plasma proteins in vitro rapidly and at small concentrations of KO2,
similar to damage caused by Dox. All incubation times tested, 15,
30, and 90 min, resulted in significantly increased plasma protein
oxidative damage as indicated by PC elevation with PC at each suc-
cessive time point significantly increased over the previous one
(Fig. 1a) [20]. Significant PC elevation was observed in plasma even
at the lowest concentrations of KO2 tested (Fig. 1b). Evidence of lipid
damage was also found in KO2-treated plasma in the form of protein-
bound HNE, a product of lipid peroxidation [21] (Fig. 1c). Significant
increases in protein-bound HNE were observed after 30 min incu-
bation at 10 μM KO2 (Fig. 1c and d) and at 1 and 10 μM KO2 (Fig. 1d).

Higher concentrations of KO2 and longer incubation times tested
were required to reach significant increases in protein-bound HNE
following KO2 addition (Fig. 1c) which might reflect the negative
charge of O2

−• being slow to enter a hydrophobic environment.
In biological systems, O2

−• is produced enzymatically during re-
actions catalyzed by oxidases and non-enzymatically during
inefficient actions of the mitochondrial electron transport chain. The
damaging effects of O2

−• to biomolecules may be limited due to the
rapid rate of radical–radical reactions, the limited reactivity of O2

−•
with non-free radical targets, and the diffusion-limited efficiency
of superoxide dismutase (SOD) enzymes [43–45]. Reaction of O2

−•
with SOD produces a less reactive H2O2 that can be converted to
water and molecular oxygen by peroxidase enzymes. However, when
the chemotherapeutic agent Dox is present in vivo, continued redox
cycling of the quinone moiety creates a continued source of O2

−•
as Dox travels into the cell and into the nucleus [2,32]. O2

−• reacts
with other free radicals including nitric oxide (NO•) rapidly, at ap-
proximately diffusion-limited rates. The reaction of O2

−• with NO•
produces the even more reactive peroxynitrite (ONOO−) whose down-
stream reactivity damages SOD, thereby limiting natural defenses
against these free radicals [9,46]. O2

−• has been shown to be highly
reactive with iron–sulfur clusters producing H2O2 and, in a subse-
quent reaction, iron II (Fe2+). Increased production of H2O2, produced
via the actions of SOD or reaction of O2

−• with iron–sulfur clus-
ters, through Fenton Chemistry can lead to the production of the
highly reactive •OH, the strongest oxidant in biological systems [47].
Reactive oxygen species (ROS), including O2

−•, NO•, •OH, H2O2, and
reactive aldehydes (i.e., HNE) can oxidize intracellular proteins and
other biomolecules [48]. In a series of reactions outlined by Stadtman,
1997 under conditions where only O2

−• and •OH were formed,
radical-mediated protein oxidation leads to oxidation of amino acid
side chains, fragmentation of the peptide backbone, and protein–
protein cross links [48]. These provide supporting evidence for a
plausible chemical mechanism for the oxidation of proteins by O2

−•
and its reaction products.

This study directly addresses a critical aspect of our proposed
mechanism of CICI, the question of whether superoxide, produced
via redox cycling of Dox, is an oxidant capable of inducing oxida-
tive damage to plasma protein and TNF-α elevation in macrophages,
the proposed cytokine culprit of CICI [2,32]. These results are con-
sistent with our previous results demonstrating increased protein
oxidation and lipid peroxidation markers in plasma and subse-
quent TNF-α elevation following Dox administration in vivo and in
macrophage culture. These results demonstrate that O2

−•, when
added to plasma in the form of KO2 salt, stabilized by the molec-
ular cage of a crown ether, 18crown6, and incubated at physiologic
37 °C, results to protein oxidation in plasma and TNF-α elevation
in macrophage culture similar to that observed following Dox ad-
ministration in vivo. Together, these results are compelling evidence
supporting the notion that O2

−• production as a result of Dox ad-
ministration is the likely initiating event in the neurotoxicity
associated with Dox and provides useful insights into our hypoth-
esized mechanism of CICI caused by cancer chemotherapy with ROS-
producing chemotherapeutic agents like Dox.
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Fig. 2. Superoxide (O2−•) induces TNF-α production in J774.A1 macrophages. J774.A1
macrophages were seeded onto a 48-well plate at 5 × 105 cells/well and allowed to
grow overnight. Preincubation of solvent, lipopolysaccharide (LPS; 1 μg/mL), KO2
(0.1 μM; 1 μM; 10 μM) for 1 h was performed before their addition to J774.A1 mac-
rophages. Following 24 h incubation, supernatants were collected and analyzed for
TNF-α concentration. Values are means ± SEM (n = 3) (*p < 0.05, **p < 0.005,
***p < 0.0001 compared to solvent alone). One-way ANOVA (p < 0.0001) with
Bonferroni’s Multiple Comparison Test also demonstrated these significant differ-
ences between groups.
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