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a b s t r a c t

Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of

three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofi-

brillary tangles (NFTs). The major component of SP is amyloid b-peptide (Ab), which has been shown to

induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including

4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins,

altering structure and function of the latter. In the present study we measured the levels of the HNE-

modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor

for a number of proteins including pyruvate dehydrogenase and a-ketoglutarate dehydrogenase, key

complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid

in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the

levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains.

Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH

levels and activities were found to be significantly reduced in AD brain compared to age-matched

control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a

two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative

dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study

is consonant with the notion that lipoic acid supplementation could be a potential treatment for the

observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or

delay the oxidative stress in and progression of this devastating dementing disorder.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Introduction

Oxidative stress occurs due to an imbalance in the levels of
antioxidant defense systems and production of reactive oxygen/
reactive nitrogen species. Oxidative stress has reported to be
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important in the pathophysiology of a number of age-related
diseases, including Alzheimer disease (AD). AD is characterized by
the presence of three principal pathological hallmarks: synapse
loss, extracellular senile plaques (SP), and intracellular neurofi-
brillary tangles (NFTs). The major component of SP is amyloid
b-peptide (Ab), a 40–42 amino acid peptide that is derived
from proteolytic cleavage of an integral membrane protein,
i.e., amyloid precursor protein (APP), by the action of beta- and
gamma-secretases [1,2].

Shown to induce oxidative stress, Ab1–42 can insert as oligo-
mers into the lipid bilayer and initiate lipid peroxidation [3–8],
resulting in the formation of lipid peroxidation products including
4-hydroxy-2-nonenal (HNE), malondialdehyde, F2-isoprostanes,
and 2-propen-1-al (acrolein), among others. Protein-bound HNE
is one of the important markers used for studying the lipid
peroxidation process, and has been known to be involved in
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depleting cellular nucleophilic compounds such as thioredoxin,
glutathione, lipoic acid, etc.[5,9–13].

Protein-bound HNE as well as free HNE, TBARS, MDA, and
isoprostanes (F2isoP) levels are increased in plasma, urine, and
CSF in AD and amnestic mild cognitive impairment (aMCI-
arguably the earliest form of AD), compared to healthy controls
[5,8,14–17]. The increased HNE formation of covalent Michael
adducts account for one means of increased formation of protein
carbonyls [18]. Brains from both AD and aMCI subjects show
increased levels of protein carbonyls in AD in affected brain
regions, while the cerebellum, largely devoid of Ab pathology,
remained relatively untouched [19]. The anti-oxidant system,
both enzymatic and non-enzymatic, shows an inverse correlation
with increased oxidative stress markers suggesting that free
radicals are important in the progression and pathogenesis of
AD [20–22].

Lipoic acid is an important co-factor for multi-enzyme com-
plexes such as a-ketoglutarate dehydrogenase (KGDH), pyruvate
dehydrogenase (PDH), branched oxo-acid or a-ketoacid dehydro-
genase complex, and glycine decarboxylase complex or glycine
cleavage system [23]. Lipoic acid also is unique among endogen-
ous antioxidants, in that it can scavenge free radicals in aqueous
as well as in lipid or membrane phase [23]. Lipoic acid in its
endogenous form contains a disulfide bond and it remains
inactive unless reduced to dihydrolipoic acid (DHLA) in a reaction
catalyzed by lipoamide dehydrogenase (LADH), using NADH
as the source of reducing equivalents [24]. The antioxidant and
functional activity of lipoic acid as a co-factor is attributed to its
reduced DHLA form [23]. The sulfhydryl groups on DHLA act
similar to –SH group from glutathione or cysteine and help in
reduction of free radicals by providing –H or an electron. Hence,
covalent modification of reduced lipoic acid by HNE could have
detrimental effects on cellular energetics and the antioxidant
defense system [9].

In the present study, we determined the levels of HNE-bound
lipoic acid and also measured the levels and activity of the
enzyme LADH in AD and age-matched control brain. In addition,
we investigated the alterations in LADH enzyme activity in
presence of the lipid peroxidation end product-HNE.
Materials and methods

Chemicals

All chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA) unless otherwise stated. Nitrocellulose membranes and
the electrophoresis transfer system employing a Trans-Blot semi-
dry transfer cell were obtained from Bio-Rad (Hercules, CA, USA).

Control and AD brains

Frozen inferior parietal lobule (IPL) specimens from ten control
and twelve AD subjects were obtained from the University of
Kentucky Rapid Autopsy Program of the Alzheimer’s Disease
Clinical Center (UK ADC). All the subjects were longitudinally
followed and underwent neurological and physical examinations
and annual neuropsychological testing. The control subjects used
in the current study were without history of dementia or other
neurological disorders and with intact activities of daily living
(ADLs).

Sample preparation

Briefly, the frozen brain tissue samples were weighed, and
homogenized via polytron at 200 mg/mL in ice-cold PBS with a
complete cocktail of protease inhibitors (from Amresco, in Solon,
OH). An aliquot of the raw homogenate was centrifuged at
20,800� g for 30 mins at 4 1C. The supernatants were collected
and stored at �80 1C until the time of assay, which was then used
for slot blot analysis. For Western blot and enzyme assays raw
homogenates were used.

HNE-bound lipoic acid (HNE-LA) levels

Levels of HNE-LA were measured by the slot blot technique as
previously described with some modification in the immuno-
chemical detection part of the technique [25,26]. Protein (1 mg)
from AD-IPL and age matched control samples were loaded onto
nitrocellulose membranes using the slot blot technique. After the
transfer of proteins on the nitrocellulose membrane, the mem-
brane was incubated in a solution of 250 mM sodium borohydride
in 100 mM MOPS buffer at pH 8.0 for 15 min. Sodium borohydride
chemically reduced the aldehyde moiety on HNE to an alcohol,
since the primary antibody would recognize only 4-hydroxy-2-
trans-nonanol bound lipoic acid. The reducing solution was
prepared fresh and the pH of the MOPS was adjusted to 8.0 prior
to addition of sodium borohydride. After 15 min, the membrane
was washed three times with ultra pure H2O followed by washing
three times with PBS for 5 min each and blocked for 30 min in 5%
milk in 1x PBS. Then the membrane was subsequently incubated
with primary antibody (1:2000) followed by HRP-conjugated
secondary antibody as described previously [25,26] for the detection
of the HNE-LA levels.

Lipoamide dehydrogenase (LADH) levels

LADH levels were estimated by the Western blot technique as
described previously [20]. Protein (75 mg) from controls and AD
samples were loaded side by side on SDS-PAGE gels. Separated
proteins were then transferred to the nitrocellulose membrane
and detected immunochemically using the specific primary and
secondary antibodies.

In-vitro HNE treatment to mice brain

Whole brains from male CD-1/129 background mice (n¼4)
were homogenized separately in isolation buffer (0.32 M sucrose,
2 mM EDTA, 2 mM EGTA, 20 mM HEPES, 0.2 mM PMSF, 4 mg/ml
leupeptin, 4 mg/ml pepstatin, 5 mg/ml aprotinin, pH 7.4). The raw
homogenates were centrifuged at 2500xg, for 10 min at 4 1C and
supernatants were collected. The supernatant solutions were
treated with HNE as described previously [8]. 1 mg of the super-
natant from a sample was incubated with 10 mM of HNE (pre-
pared in 10 mM, pH 8.0 PBS) and for control, another 1 mg was
incubated with the same volume of PBS alone. The HNE concen-
tration was chosen based on previous studies [8,27–31]. The
incubation was carried out for 3 h at 37 1C on an orbital shaker.
After the incubation, control and HNE-treated samples were
centrifuged at 10, 000� g for 10 min at 4 1C. The resultant pellets
were separately washed with sucrose buffer three times and
finally suspended in �150 mL of the same sucrose buffer. Protein
estimation was performed prior to measuring LADH enzyme
activity and HNE-LA levels (as described above) in these samples.

Lipoamide dehydrogenase activity assay

The enzymatic activity of LADH (EC 1.8.1.4) was measured by
decreased absorbance caused by oxidation of NADH. The assay
protocol was provided by Sigma-Aldrich. In brief, a mixture of 2%
bovine serum albumin with 30 mM EDTA, 2 mM NADþ , 1.5 mM
NADH disodium salt, along with 20 mM lipoic acid as a substrate was
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added to 20 mg of sample. Sodium phosphate buffer (50 mM, pH 6.5)
was used as an assay buffer. The rate of the reaction was monitored
spectrophotometrically at 340 nm wavelength for 10 min.

Statistical and data analysis

All the data obtained from different biochemical assays were
subjected to statistical analysis. Significant difference in AD-IPL
and age-matched control samples as well as HNE-treated and
age-matched controls was determined by employing the Stu-
dent’s unpaired t-test with significance at po0.05.
Fig. 2. Left: lipoamide dehydrogenase (LADH) activity in control and AD-IPL-

human brain region; control n¼10, AD n¼12. Right: LADH activity measured in

control and HNE-treated mice brain; n¼4. All the values are expressed as percent

control mean7SEM; *po0.05, xpo0.01 compared to mean of control samples.
Results

The levels of HNE-bound lipoic acid (HNE-LA) were detected in
the IPL region of AD and age-matched control brain samples using
a specialized antibody against HNE-LA modification (produced in
Dr. Luke Szweda’s laboratory). Significantly decreased HNE-LA
levels in AD samples were observed (Fig. 1-left). Previous studies
from our laboratory and other showed that HNE levels are
elevated in AD, and the oxidative modification of the proteins
affects the structure and function of proteins [3,8,17,32,33]. HNE
can react only with the reduced form of lipoic acid-DHLA [34],
and the enzyme responsible for reduction of LA to DHLA is
lipoamide dehydrogenase. Therefore, to test the hypothesis that
reduced levels of HNE bound to lipoic acid could be due to
alterations in lipoamide dehydrogenase, we measured activities
and levels of LADH in AD and control IPL brain region. Both the
levels and activities of LADH were significantly reduced in AD-IPL
compared to age-matched controls (Fig. 1-center, Fig. 2-left),
consistent with the notion that LADH has decreased ability to
reduce LA in AD brain. To investigate further if HNE itself can
inhibit enzyme activity of LADH, an in-vitro HNE treatment was
performed using mice brain homogenates. LADH enzyme activity
Fig. 1. Left: percent control HNE-LA levels estimated by the slot blot technique in

IPL brain region of control (n¼10) and AD (n¼12) samples. Center: percent

control lipoamide dehydrogenase (LADH) levels measured by Western blot

analysis in IPL brain region of control (n¼10) and AD (n¼12) samples. Right:

percent control HNE-LA levels measured by the slot blot technique in mice brain

samples (n¼3) after in-vitro HNE-treatment. The bar graphs are accompanied by

Western blot bands of LADH and actin, the later used as loading control to which

the intensity of each LADH band was normalized. All the values are expressed as

mean7SEM, *po0.05, Ypo0.001 compared to mean of respective control

samples.
in HNE-treated mice brain samples was significantly decreased
compared to their age-matched controls (Fig. 2-right), consistent
with the notion that HNE can covalently modify LADH. However,
HNE-LA levels were increased in mice brain after HNE-treatment
(Fig. 1-right).
Discussion

Glucose metabolism is essential for proper brain function; a
minimum interruption of glucose metabolism causes brain dys-
function and memory loss [35]. Positron emission tomography
[36] scanning shows a consistent pattern of reduced cerebral
glucose utilization in AD brain [37]. Mitochondria are a main
source for free radical production and are also critically important
for production of the cellular currency, ATP. AD brain shows
abnormal mitochondrial morphology and impaired mitochondrial
energy metabolism [38–43]. A number of studies suggest that
the rate of cerebral metabolism is reduced in AD, MCI and early
AD [44–47], and redox proteomics studies from our laboratory
identified a large number of glycolytic, TCA, and mitochondrial
enzymes as oxidatively dysfunctional [48]. A recent study
employing a triple transgenic mouse model of AD showed that
mitochondrial bioenergetics deficits precede AD pathology [49].

Decreased cerebral energy metabolism correlates with the
altered expression and decreased activity of mitochondrial energy-
related proteins such as the pyruvate dehydrogenase complex, and
alpha-ketoglutarate dehydrogenase complex (KGDHC). As men-
tioned earlier, both these proteins have lipoic acid as a co-factor
that is critical for proper function of the protein. The modification
of lipoic acid by HNE would likely lead to altered energy metabo-
lism, consequently leading to decreased levels of cellular ATP at
nerve terminals promoting loss of synapses and synaptic function.
Detrimental downstream consequences of ATP loss include
decreased propagation of action potentials, decreased long-term
potentiation, and loss of memory and learning, likely contributing
to these clinical observations exhibited by AD and MCI patients.
As noted above, synapse loss is considered an early feature of AD
progression.

The treatment of rat mitochondria with HNE leads to selective
inhibition of KGDH and PDH leading to the loss of activity. These
results were echoed when purified forms of KGDH and PDH were
treated with HNE suggesting that HNE modification of lipoic acid
might contribute to their reduced activity [34]. Further, Korotchkina
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et al. [50] showed that HNE inactivates KGDH and PDH in human
HepG2 cells. However, successive treatment with lipoic acid and
other thiol supplements protected these complexes from HNE
modification. Further, the same study reported that inhibition of
PDH was observed at its subunit E2E3-BP. More extensive damage
was in the subunit E3-dihydrolipoamide dehydrogenase (reduced
form of LADH) when NADH was present and sulfhydryl groups on
lipoic acid were in the reduced form [50].

Similar to lipoic acid, LADH is also shared as a subunit E3 by four
multi-enzyme complexes: KGDH, PDH, the branched oxo acid or
a-ketoacid dehydrogenase complex, and the glycine decarboxylase
complex or glycine cleavage system [51–53]. Inhibition of the levels
and activity of LADH may reflect the loss of enzymatic activity of
these multi-enzyme complexes in AD. Our results are consonant
with previous findings of decreased LADH levels and activity in AD
brain [53]. Furthermore, decreased LADH activity after in-vitro

HNE-treatment suggests oxidative inhibition of LADH can be
induced by HNE as observed previously in case of other TCA
enzymes [34]. There is substantial evidence that alterations in the
enzymes related to mitochondrial energetics play a role in patho-
genesis of neurodegenerative diseases [54]. Studies with caucasians
[55] and Ashkenazi Jewish populations [56] have associated the
gene for LADH with reduced risk of AD. In other research, mice
deficient in LADH had altered vulnerability to the dopaminergic
neurotoxin MPTP used in Parkinson disease models and to malonate
and 3-nitropropionic acid, which have been used in models of
Huntington disease [36]. However, post HNE-treatment increased
HNE-LA levels are contrary to our observation in AD brain. While we
do not have a definitive explanation for this observation, several
differences in mouse vs. human brain may be involved, three of
which may include: (a) involvement of multiple signaling pathways
that could affect HNE-LA levels; (b) involvement of some but not all
lipoic acid dependent enzyme complexes in mouse brain following
HNE addition, which would lead to elevated HNE-LA; and/or
(c) because of the extensive oxidative stress present in AD brain a
less reductive environment in AD brain exists than in mouse brain,
Fig. 3. The NADH-dependent oxido-reductase enzyme lipoamide dehydrogenase

(LADH) is also an important member of the mitochondrial energy generation

complex. Alteration of the structure and activity of LADH by elevated reactive

oxygen species (ROS) may hamper energy metabolism and ATP production. Lipoic

acid (LA) must be in the reduced form as part of its co-factor function for

mitochondrial TCA complexes such as a-ketoglutarate dehydrogenase. However,

oxidized LADH is unable to reduce LA to DHLA, and therefore HNE is unable to

bind to DHLA efficiently. Consequently, in AD brain decreased LA-HNE binding

was observed. Severe effects on learning, memory, and higher executive function-

ing, all significantly lost in AD patients would be expected. Supplementation of LA

conceivably may protect LADH from ROS or end products of ROS (e.g., HNE) by

self-sacrifice mechanism, potentially providing protection against dementia or

slowing the rate of progression of AD.
the latter perhaps permitting more disulfide bond breakage of LA via
means other than LADH with consequent elevated HNE-LA. Such
possibilities are the subject of future studies in our laboratory.

In AD, oxidative stress can alter the functions of TCA enzymes
as well as induce intracellular accumulation of calcium, which
may lead to cellular death [33,57,58]. Dysfunction of TCA
enzymes may compromise cellular energetics and elevate oxida-
tive stress further [55,59]. If not intervened, this feed-forward
loop may accelerate the progression of the disease. Various
studies have proposed using antioxidant therapeutics to prolong
the time of onset of AD or retard the rate of its progression
[60–65]. Treatment with lipoic acid reduced the lipid peroxida-
tion marker-HNE and apoptotic markers in AD fibroblasts cultures
[66]. In the same study, co-treatment of cells with N-acetyl
cysteine showed much better protection from oxidative stress
than lipoic acid or N-acetyl cysteine alone [66]. Apart from acting
as an antioxidant itself, lipoic acid in the reduced form can also
reinforce other water-or lipid-soluble antioxidants such as glu-
tathione, ascorbate, and vitamin E by scavenging their radicals
[23]. A previous study from our laboratory showed that pretreat-
ment of cortical neurons with acetyl L-carnitine and lipoic acid
protected cells against HNE-mediated oxidative stress and neu-
rotoxicity by inducing GSH levels and reducing protein and lipid
oxidation and inducing protective pathways involving ERK1/2
[67]. The current studies have provided a rationale (Fig. 3) for
studies underway in our laboratory to better understand the
mechanism(s) and develop therapeutic(s) to prevent Ab-induced
oxidative stress and neurotoxicity, relevant to slowing or inhibi-
tion of the progression and pathogenesis of AD.

Finally, the results of this paper fit the two-hit hypothesis of
AD [68–72], namely that oxidative stress may combine with other
events to push the patient to AD. In this case, the well-known
oxidative stress in AD, which occurs early in the disease, i.e., at
the aMCI stage if not earlier [3,4], could lead to loss of ATP
production by oxidatively modifying numerous enzymes of the
glycolytic and TCA cycles and the ETC, among which is LADH. The
consequent decreased levels of DHLA would decrease ATP pro-
duction, while simultaneously having a less reduced environment
with consequent more free radical oxidative stress. The resulting
loss of neurons could then contribute to the clinical presentation,
progression, and pathology of AD. Studies to test this idea are
underway in our laboratory.
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