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The potential role of the posttranslational modification of proteins with O-linked N-acetyl-β-D-glucosamine
(O-GlcNAc) in the pathogenesis of Alzheimer disease (AD) has been studied extensively, yet the exact function
of O-GlcNAc in AD remains elusive. O-GlcNAc cycling is facilitated by only two highly conserved enzymes:
O-GlcNAc transferase (OGT) catalyzes the addition, while O-GlcNAcase (OGA) catalyzes the removal of GlcNAc
from proteins. Studies analyzing global O-GlcNAc levels in AD brain have produced inconsistent results and the
reasons for altered O-GlcNAcylation in AD are still poorly understood. In this study, we show a 1.2-fold increase
in cytosolic protein O-GlcNAc modification in AD brain when compared to age-matched controls. Interestingly,
O-GlcNAc changes seem to be attributable to differential modification of a few individual proteins. While our
finding of augmented O-GlcNAcylation concurs with some reports, it is contrary to others demonstrating de-
creased O-GlcNAc levels in AD brain. These conflicting results emphasize the need for further studies providing
conclusive evidence on the subject of O-GlcNAcylation in AD. We further demonstrate that, while OGT protein
levels are unaffected in AD, OGA protein levels are significantly decreased to 75% of those in control samples.
In addition, augmented protein O-GlcNAcmodification correlates to decreasedOGA protein levels in AD subjects.
While OGA inhibitors are already being tested for AD treatment, our results provide a strong indication that the
general subject of O-GlcNAcylation and specifically its regulation by OGA and OGT in AD need further investiga-
tion to conclusively elucidate its potential role in AD pathogenesis and treatment.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

O-Linked N-acetyl-β-D-glucosamine (O-GlcNAc) is a posttransla-
tional modification in which a single N-acetylglucosamine is attached
to a protein [1]. O-GlcNAc modification is localized to the nucleo-
cytoplasmic compartment [1], it is dynamic and changes in response
to various stimuli [2]. O-GlcNAc cycling is facilitated by only two en-
zymes. The addition of GlcNAc from its high energy donor substrate
UDP-GlcNAc onto the hydroxyl groups of serine and threonine residues
of target proteins is catalyzed by O-GlcNAc transferase (OGT) [3]. OGT
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activity is regulated over a broad range of UDP-GlcNAc concentrations
[4] that are dependent on the flux of nutrients through the hexosamine
biosynthetic pathway (HBP). The HBP converts about 2–3% of the intra-
cellular glucose toUDP-GlcNAc [5], therefore, O-GlcNAc is often referred
to as a nutrient sensor [6]. The enzyme β-N-acetylglucosaminidase
(O-GlcNAcase or OGA), amember of the family of hexosaminidases, cat-
alyzes the removal of GlcNAc from proteins. Unlike lysosomal hexosa-
minidases, OGA activity is highest at neutral pH and it localizes mainly
to the cytosol [7]. Both OGT and OGA are transcribed by two highly con-
served genes and are expressed ubiquitously with high levels in brain
and pancreas [8,9]. The OGT gene on the X chromosome encodes three
OGT isoforms with identical catalytic domains but a varying number
of tetratricopeptide repeats: the longest and shortest isoforms, termed
ncOGT and sOGT, respectively, are found in the nucleus and cytoplasm,
while a third isoforms is localized to themitochondria (mOGT) [10–12].
OGA is encoded byMGEA5 on chromosome 10which gives rise to a full-
length OGA, FL-OGA, as well as a shorter nuclear variant termed
NV-OGA [13,14]. OGT and OGA knockout studies have demonstrated
that O-GlcNAc is essential for life as its absence leads to embryonic or
neonatal lethality, respectively [10,15]. In accordancewith its important
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role in development, perturbations in O-GlcNAc cycling are also associ-
atedwith different diseases such as Alzheimer disease (AD), cancer, and
type II diabetes (reviewed in Ref. [16]).

AD is clinically characterized by cognitive decline and memory
impairment, and its histopathological hallmarks include extracellular se-
nile plaques containing amyloid β-peptide, a toxic fragment of the amy-
loid precursor protein, and intracellular neurofibrillary tangles consisting
of hyperphosphorylated tau protein [17]. In addition, positron emission
tomography studies have demonstrated early impairment of cerebral
glucose metabolism in AD [18]. Increasing evidence suggests that
O-GlcNAc may play an important role in the pathogenesis of AD since
both OGT and OGA are highly expressed in brain [8,9] and the OGA
gene maps to a gene region that has been linked to late onset AD [19].
Furthermore, amyloid precursor protein and tau as well as other neuro-
nal proteins are O-GlcNAc modified [20–22]. However, studies on
O-GlcNAcylation in AD brain have revealed conflicting results. For
example, one study reported increased protein O-GlcNAcylation, while
another study reported decreased protein O-GlcNAcylation in AD brain
[23,24]. In addition, the mechanisms behind altered protein O-GlcNAc
modification in AD brain remain elusive.

With the exact role of O-GlcNAc in AD still unclear, the current study
focuses on global O-GlcNAc levels as well as the enzymes controlling its
cycling in samples from the inferior parietal lobule (IPL), a brain region
known to be affected by AD [25].

2. Material and methods

2.1. Chemicals

All chemicals and antibodies were from Sigma Aldrich (St. Louis,
MO) unless noted otherwise. Precision Plus Protein Standard, 4–15%
or 8–16% Criterion TGX Precast gels, 10× TGS running buffer, and
0.45 nm nitrocellulose membrane were from Bio-Rad (Hercules, CA)
and 10× ReBlot Plus Strong Stripping Antibody Solution was from
Millipore (Temecula, CA). Primary antibodies used in this study were
monoclonal anti-O-GlcNAc antibody (clone CTD110.6), rabbit anti-
actin antibody, monoclonal anti-β-actin antibody, and monoclonal
anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody.
Anti-OGT antibody clone AL28 was kindly provided by S. Arnold, Johns
Hopkins University, Baltimore, MD, and anti-OGA antibody was kindly
provided by G. Crawford, Mercer University, Macon, GA. Secondary
antibodies used were anti-mouse IgG/IgM horseradish peroxidase
(HRP) (Millipore, Temecula, CA), ECL™ anti-rabbit IgG HRP, ECL™ Plex
goat-anti-mouse IgG, Cy™5, ECL™ Plex goat-anti-rabbit IgG, Cy™5 (all
GEHealthcare, Pittsburgh, PA) and anti-rabbit IgG alkaline phosphatase.

2.2. Subjects

Frozen IPL and cerebellumsamples of subjectswithwell-characterized
AD and age-matched controls were obtained from Sanders-Brown Center
on Aging of the University of Kentucky. Age, gender, post-mortem
intervals (PMI) and Braak stages are listed in Table 1.

2.3. Sample preparation

Brain samples were homogenized in ice-cold isolation buffer (0.32
M sucrose, 20 mMHEPES, 2 mM EDTA, 2 mM EGTA, and 0.1 M GlcNAc,
Table 1
Demographic information of AD subjects and age-matched controls.

Age (years)
Mean ± SD

Sex PMI (h)
Mean ± SD

Braak stage

Control 85 ± 5.1 4 M, 9 F 3.2 ± 2.2 0-IV
AD 84 ± 5.8 4 M, 9 F 3.2 ± 0.8 V-VI
pH 7.4 with 4 μg/ml leupeptin, 4 μg/ml pepstatin A, 5 μg/ml aprotinin,
and 0.2 mM PMSF) using a Wheaton glass homogenizer. One aliquot
was set on ice and sonicated 2× 10 s on 20% power using a 550 Sonic
Dismembrator (Fisher Scientific, Rockford, IL) and centrifuged at 4 °C
for 10 minutes at 1000g to obtain homogenates. A different aliquot
was subjected to subcellular fractionation. Samples were first centri-
fuged at 4 °C for 10 minutes at 1000g, the supernatant (crude cytosolic
fraction) was transferred into a new tube and centrifuged again at 4 °C
for 10 minutes at 16,090g. The resulting supernatant represents the
cytosolic fraction. Protein estimation was performed using Pierce BCA
Protein Assay (Thermo Scientific, Rockford, IL).

2.4. Western blot analysis

Samples (50 μg homogenate or 25 μg cytosolic fraction) were mixed
with 4× sample buffer (0.2 M Tris HCl, pH 6.8, 40% glycerol, 20%
β-mercaptoethanol, 8% sodium dodecyl sulfate (SDS), 0.01%
bromophenol blue), heated 5 minutes at 95 °C and subjected to SDS-
polyacrylamide gel electrophoresis. Separated proteins were then
transferred onto nitrocellulose membranes and membranes were
stained with Ponceau S (0.1% Ponceau S, 7.5% acetic acid) to monitor
transfer. After destaining in wash blot (150 mM NaCl, 3 mM NaH2PO4,
17 mM Na2HPO4, and 0.04% Tween 20), membranes were blocked in
blocking solution (3% (w/v) bovine serum albumin (BSA) in wash
blot). Primary antibody was diluted in blocking solution and mem-
branes were incubated overnight at 4 °C. Themembranes were washed
three times in wash blot and then incubated with secondary antibody
diluted in wash blot for 1 h at room temperature. Membranes were
washed three times with wash blot before signal detection. O-GlcNAc
and OGA signals were detected chemiluminescently using Clarity™
Western ECL Substrate (Bio-Rad, Hercules, CA), OGT signals were devel-
oped colorimetrically using 5-bromo-4-chloro-3-indolyl phosphate/
nitro blue tetrazolium (Thermo Fisher Scientific, Rockford, IL) in alkaline
phosphatase buffer (0.1 M Tris, 0.1 M NaCl, and 5 mM MgCl2, pH 9.5)
and loading controls were detected using CyDyes. All images were ac-
quired with the ChemiDoc™ MP imaging system and image analysis
was performed using Image Lab™ Software (Bio-Rad, Hercules, CA).

2.5. OGA activity assay

OGA activity assay was performed using the synthetic substrate
p-nitrophenyl N-acetyl-β-D-glucosaminide (pNP-GlcNAc) as described
by Zachara et al. (2011) [26]. Briefly, samples were homogenized in iso-
lation buffer without EDTA, EGTA and GlcNAc, and crude cytosolic frac-
tions were prepared as described above. The samples were incubated
with concanavalin A agarose for 30 minutes at 4 °C to remove interfer-
ing hexosaminidases. Samples were then desalted using Zeba™ Desalt
Spin Columns (Pierce Biotechnology, Rockford, IL) and protein estima-
tionwas performed. Sample (25 μg) wasmixedwith activity assay buff-
er (final concentrations: 50 mM sodium cacodylate, pH 6.4, 50 mM
N-acetylgalactosamine, 0.3% BSA, and 2 mM pNP-GlcNAc). Reactions
were incubated at 37 °C for 2 h and stopped by the addition of
500 mM Na2CO3. Absorbance was read at 405 nm and OGA activity is
reported as enzyme activity units where one unit catalyzes the release
of 1 μmol pNP/min from pNP-GlcNAc.

2.6. Statistical analysis

Signal intensities from Western blot analyses were normalized to
loading control (actin or GAPDH) and converted to % control. Data are
shown as mean ± SEM. All statistical analyses were performed with
GraphPad Prism 5 (GraphPad Software, San Diego, CA). For comparison
of AD and age-matched controls Student's t-test was performed where
p b 0.05 was considered to be statistically significant. Possible relation-
ship of two factors was assessed by Pearson correlation followed by
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computation of two-tailed p-value where p b 0.05 was considered to be
statistically significant.

3. Results

3.1. Increased O-GlcNAc levels in AD brain

Total O-GlcNAc modification in cytosolic IPL samples from AD sub-
jects is increased when compared to age-matched controls (100 ± 3
vs. 119 ± 7; p = 0.03; n = 13; Fig. 1A,B). As shown in Fig. 1A,
O-GlcNAc signals within the groups demonstrate great variations. Espe-
cially the O-GlcNAc signals at approximately 75, 50 and 27 kDa (as indi-
cated by the arrows) differ greatly between the samples and were
therefore analyzed separately (Fig. 1C). The 75 kDa O-GlcNAc band is de-
creased to less than half of that of the control samples (100±11 vs. 43±
6; p= 0.0002; n=13)while the O-GlcNAc signals at 50 kDa and 27 kDa
are both increased in AD (100 ± 7 vs. 143 ± 21; p = 0.06 and 100 ± 11
vs. 165 ± 29; p = 0.04; n = 13). Proteomics analyses are underway to
discover the identity of differentially O-GlcNAc-modified proteins in AD.
Our preliminary results indicate the 27 kDa band may represent
O-GlcNAc-modified triose phosphate isomerase, a glycolytic enzyme
which has been previously described as O-GlcNAc modified [27]. Pre-
incubation of anti-O-GlcNAc antibody with 0.1 M GlcNAc prevented
signal detection on a replicate blot indicating antibody specificity. Only
after long exposure times a signal at approximately 35 kDa could be
detected (Fig. 1F). Analysis of cerebellum samples demonstrated no sig-
nificant difference in cytosolic protein O-GlcNAcylation between AD and
age-matched controls (100 ± 2 vs. 91 ± 6; p = 0.20; n = 8; Fig. 1D,E).

3.2. No change in OGT levels in AD brain

OGT protein levels show no difference in IPL or cerebellar samples
from AD subjects when compared to age-matched controls (IPL:
Fig. 1. O-GlcNAc levels in cytosolic fraction of IPL and cerebellar samples of subjects with AD a
fractions probed for O-GlcNAc and actin. (B) Densitometric quantification of total O-GlcNAc sign
tification of O-GlcNAc-positive bands at 75, 50 and 27 kDa, as indicated by the arrows in (A), in I
of control and AD cerebellar cytosolic fractions probed for O-GlcNAc and GAPDH. (E) Densitom
samples (n = 8). (F) O-GlcNAc detection in IPL homogenate (1) and cytosolic fraction (2) afte
molecular weight marker (M). For densitometric analyses, normalized O-GlcNAc signals were
100 ± 8 vs. 101 ± 4; p = 0.89; n = 13; cerebellum: 100 ± 7 vs. 82 ±
7; p = 0.09; n = 8; Fig. 2). Only the largest of the three OGT isoforms,
ncOGT with an apparent molecular weight of ~110 kDa, was analyzed
as additional lower molecular weight signals could only be detected
after sustained incubation with developing agents and seemed to result
from cross-reaction rather than from a specific antibody reaction.

3.3. Decreased OGA protein levels in AD brain

Both OGA isoforms, cytosolic full-length OGA (FL-OGA) with an ap-
parent molecular weight of ~130 kDa as well as the nuclear variant of
OGA (NV-OGA) at ~75 kDa, could be detected. FL-OGA protein levels
are significantly decreased in IPL samples from AD subjects when
compared to age-matched controls, while NV-OGA protein levels are
unaffected (100 ± 8 vs. 75 ± 8; p = 0.04 and 100 ± 8 vs. 108 ± 6;
p = 0.43 n = 13; Fig. 3A,B). There is no significant difference in OGA
levels in the cerebellum of AD and age-matched controls (FL-OGA:
100 ± 10 vs. 82 ± 12; p = 0.28; n = 8; NV-OGA: 100 ± 5 vs. 91 ± 9;
p = 0.40; n = 8; Fig. 3C,D).

Analysis of OGA activity using a synthetic substrate revealed
decreased OGA activity in crude cytosolic fractions from AD sam-
ples when compared to age-matched controls (0.025 ± 0.0025 vs.
0.015 ± 0.002; p= 0.01; n= 5; Fig. 4A). However, after normalization
of OGA activity to the corresponding FL-OGA protein levels no differ-
ences in OGA activity could be detected between AD and control
samples (Fig. 4B).

3.4. Increased O-GlcNAc levels correlate with decreased OGA protein levels

In IPL samples, increased cytosolic protein O-GlcNAcylation
correlates with decreased FL-OGA levels (p = 0.002). No significant
correlation could be detected between O-GlcNAc and NV-OGA or
OGT protein levels (p = 0.71 and p = 0.25, respectively). In addition,
nd age-matched controls. (A) Representative Western blot of control and AD IPL cytosolic
als in IPL cytosolic fractions of control and AD samples (n= 13). (C) Densitometric quan-
PL cytosolic fractions of control andAD samples (n=13). (D) RepresentativeWestern blot
etric quantification of O-GlcNAc signals in cerebellar cytosolic fraction of control and AD
r preincubation of CTD110.6 with 0.1 M GlcNAc. The bar indicates the 37 kDa band of the
converted to % control and results are shown as mean ± SEM; *p b 0.05; ***p b 0.001.



Fig. 2. OGT protein levels in IPL and cerebellar samples of subjects with AD and age-matched controls. (A) RepresentativeWestern blot of control and AD IPL samples probedwith specific
antibodies for OGT and actin. (B) Densitometric quantification of OGT signals in IPL homogenates of control and AD samples (n= 13). (C) RepresentativeWestern blot of control and AD
cerebellar samples probed with specific antibodies for OGT and actin. (D) Densitometric quantification of OGT signals in cerebellar homogenates of control and AD samples (n= 8). For
densitometric analyses, normalized O-GlcNAc signals were converted to % control and results are shown as mean ± SEM.
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O-GlcNAcylation did not correlate with age or PMI (p = 0.60 and p =
0.78, respectively) While there is no statistically significant correlation
between O-GlcNAc and Braak stage, a potential, albeit weak, link be-
tween increasing O-GlcNAcylation and higher Braak stage may exist
(p = 0.10). Graphs and data are included in supplemental Fig. S1 and
Table S2.
Fig. 3.OGA protein levels in IPL and cerebellar samples of subjects with AD and age-matched co
actin. (B) Densitometric quantification of OGA signals in IPL of control and AD samples (n=13)
actin. (D) Densitometric quantification of OGA signals in cerebellar homogenates of control and
verted to % control and results are shown as mean ± SEM; *p b 0.05.
4. Discussion

Accumulating evidence indicates that O-GlcNAc may be implicated
in the pathogenesis of AD. In this study, we observed significantly aug-
mented O-GlcNAc modification of proteins in the cytosolic fraction of
IPL samples from AD subjects. In accordance with previous results,
ntrols. (A) RepresentativeWestern blot of control and AD IPL samples probed for OGA and
. (C) RepresentativeWestern blot of control and AD cerebellar samples probed for OGA and
AD samples (n= 8). For densitometric analyses, normalized O-GlcNAc signals were con-



Fig. 4. OGA activity in IPL of subjects with AD and age-matched controls. (A) OGA activity in crude cytosolic fractions of control and AD IPL samples was measured as cleavage of pNP-
GlcNAc and absorbance of free pNP was detected at 405 nm (n= 5). Results are shown as enzyme activity units where one unit represents the amount of enzyme catalyzing the release
of 1 μmol/min of pNP from pNP-GlcNAc. (B) OGA enzyme activity units were normalized to the corresponding FL-OGA protein levels. Results are shown as mean ± SEM; *p b 0.05.
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protein O-GlcNAc modification in the cerebellum was unaltered when
comparing AD subjects to age-matched controls [23,24]. However, our
finding in IPL stands in contrast to results from Liu and colleagues,
who demonstrated a decline in protein O-GlcNAcylation in AD brain
[24,28]. Study of different brain areas, different sample preparation
and analysis methods aswell as the use of different anti-O-GlcNAc anti-
bodies may explain the observed discrepancies between different stud-
ies. Liu et al. have analyzed O-GlcNAc modification in frontal cortex by
radioimmuno-dot-blot assay or quantitative immuno-dot-blot assay
[24,28] while we have examined parietal cortex samples by Western
blot analysis. Additionally, we have used a different antibody for
O-GlcNAc detection. Our detection methods also differed from the
O-GlcNAc-specific ELISA applied by Griffith and Schmitz, who reported
increasedO-GlcNAcmodification in the detergent insoluble cytoskeletal
fraction of differentAD-affected brain areas including the parietal cortex
[23]. In addition, O-GlcNAcylation levels have been reported to decline
with postmortem delay [28], but we do not find significant correlation
between O-GlcNAcylation and PMI which may be due to the relatively
short PMI of averagely 3.2 h for both control and AD subjects.

Due to the conflictingfindings of O-GlcNAc levels in AD, thedevelop-
ment and application of a standardizedmethod for O-GlcNAc analysis in
brain samples would be useful in order to find a conclusive answer in
this matter. While antibody CTD110.6 is commonly used for O-GlcNAc
detection, repetition of our experiments, maybe using a different anti-
body, would have strengthened our data significantly. Due to the limit-
ed amount of human brain sample available for this study, experiments
could only be repeated in few individual cases. However, independent
verification would have been especially meaningful with respect to
our findings of great variations in O-GlcNAc signal patterns within the
analyzed samples. Intriguingly, the overall observed changes in
O-GlcNAcylation appear to be dependent on changes of a few individual
bands. Whether these changes are based solely on differential
O-GlcNAcylation ormay additionally be explained in part by differential
expression levels of certain proteins will be the subject of further inves-
tigation in our group.

Liu et al. explain decreased O-GlcNAcylation with reduced neuronal
glucose availability due to down regulation of glucose transporters
GLUT1 and GLUT3 in the AD brain [29]. Reduced glucose availability in
AD brain has indeed been reported by various groups. Kalaria and
Harik report reduced glucose transporters at the blood–brain barrier
as well as in the cerebral neocortex and hippocampus but not the cere-
bellum of subjects with AD [30]. Harr et al. also report a large reduction
of neuron-specific GLUT3 in AD [31]. In addition, positron emission
tomography studies have shown decreased glucose utilization in AD
brain [18]. In accordance, reduction of brain glucose supply by starva-
tion of mice leads to reduced protein O-GlcNAcylation in brain [28].
Paradoxically, in cell culture studies glucose deprivation induced a
strong increase in O-GlcNAcylation [32–34]. Augmented O-GlcNAc
modification despite lower UDP-GlcNAc concentrations was linked to
increased OGT mRNA and protein levels and/or decreased OGA protein
levels, and the authors explain the observed effects with the induction
of different stress signaling pathways [32–34]. It is highly probable
that glucose deprivation will have different effects on O-GlcNAc cycling
enzymes and the HBP as only the mere decrease in glucose availability
that has been described in AD brain. However, with the exception of
this paper, no analyses of OGT and OGA enzymes and/or their activities
have been reported in AD. In addition, glucose deprivation in cell culture
studies and chronically reduced glucose availability in AD brain may
induce different stress signaling pathways.

A growing body of evidence indicates oxidative stress as another
important player in AD [35]. Intriguingly, O-GlcNAc has been shown
to increase in response to various stressors including oxidative stress
[2], and UDP-GlcNAc pools are also susceptible to cellular stress [36].
Hyperglycemia-induced overproduction of superoxide has been
shown to inhibit GAPDH activity and to increase UDP-GlcNAc levels
probably by rerouting glucose and its metabolites from glycolysis to-
ward the HBP [36]. These effects are independent of glucose availability
as reduced GAPDH activity and increased UDP-GlcNAc levels can be
completely prevented by inhibition of mitochondrial superoxide over-
production [36]. This mechanism may also apply in AD as GAPDH and
other glycolytic enzymes are oxidized in AD [37,38] and their malfunc-
tion may divert glucose and its downstream metabolite fructose-6-
phosphate to favor UDP-GlcNAc synthesis via theHBP. However, further
studies are needed to investigate this possible link.

As noted above, O-GlcNAc cycling is mediated by only two enzymes,
OGT and OGA. The OGT gene encodes for three isoforms, the 110 kDa
ncOGT, the 103 kDa mOGT, and the 78 kDa sOGT [11,12]. In our study
only one OGT isoform, ncOGT, could be detected and analysis of IPL
and cerebellar samples revealed that ncOGT protein levels were unaf-
fected in AD. In rat brain sOGT expression declined after maturation
and no mOGT expression could be detected in adult brain [39] which
may explainwhy nomOGT and sOGTwere detected in our study. Inves-
tigation of OGT activity is necessary to allow for ameaningful discussion
of the influence of OGT onO-GlcNAcylation in AD as altered or unaltered
protein levels may not reflect changes in enzyme activity. Unfortunate-
ly, current OGT activity assays are based on the measurement of [3H]
GlcNAc incorporation into peptides. Furthermore, the exact mecha-
nisms of substrate specificity and regulation of OGT are still being
researched. OGT substrate specificity and activity are dependent on
UDP-GlcNAc concentrations [4] and OGT activity is potently inhibited
by UDP [3]. In addition, OGT is tyrosine phosphorylated and O-GlcNAc
modified [40], indicating possible regulation by posttranslational
modification. A more detailed analysis of OGT activity and regulation
is essential for the understanding of its role in differential protein
O-GlcNAcylation in AD.

Alternative splicing of the MGEA5 gene results in of two OGA
isoforms, FL- and NV-OGA with an apparent molecular weight of ap-
proximately 130 kDa and 75 kDa, respectively. Both isoforms contain
the N-terminal O-GlcNAcase domain, however, the truncated NV-OGA
lacks the C-terminal domain of FL-OGA [14]. Consistent with nucleo-
cytoplasmic localization of OGT and O-GlcNAcylated proteins, OGA
activity has been reported in cytosol and nucleus [7], however, no



1338 S. Förster et al. / Biochimica et Biophysica Acta 1842 (2014) 1333–1339
mitochondrial OGA has yet been found. FL-OGA resides predominantly
in the cytoplasm whereas NV-OGA was thought to be located mainly to
the nucleus [14]. Recently, NV-OGA has been found in lipid droplets as
well [41]. Initially, no O-GlcNAcase activity of NV-OGA could be detected
using pNP-GlcNAc as a substrate, however, assays using amore sensitive
fluorogenic substrate proved that NV-OGAwas active too albeit less than
FL-OGA [42]. Recently, this finding was confirmed with pNP-GlcNAc
showing 400-fold lower catalytic efficiency of NV-OGA when compared
to FL-OGA [43]. Little is yet known about OGA regulation. OGA has
been shown to interactwith and to be a substrate of OGT [44,45] suggest-
ing possible feedbackmechanisms for O-GlcNAc regulation. In our study,
probing for OGA revealed two OGA bands corresponding to the molecu-
lar weight of FL- and NV-OGA, respectively. Detection of NV-OGA was
unexpected as is has been shown to be quickly down regulated during
embryonic development and was undetectable in rat brain after birth
[39]. FL-OGA protein levels were significantly decreased in IPL samples
from subjects with ADwhile NV-OGA levels were unaffectedwhen com-
pared to controls. Since altered protein levels might not correspond di-
rectly to a change in protein activity, we used a common protocol to
examine OGA activity. In the current study a significant decline in OGA
activity in AD samples was observed. Despite our finding of decreased
FL-OGA protein levels, the same amount of total protein was used in
the OGA activity assay. While Macauley and Vocadlo demonstrated ac-
tivity of NV-OGA toward pNP-GlcNAc, extremely high concentrations
of recombinantly expressed, purified and concentrated enzymewere ap-
plied in this study andNV-OGAactivitywas shown to be significantly im-
paired when compared to FL-OGA [43]. Based on these findings, OGA
activity was normalized to FL-OGA protein levels revealing no difference
inOGA activity betweenAD and age-matched controls indicating that di-
minished OGA activity in AD may be due to the reduction of cytosolic
OGA protein but not to its malfunction.

However, the cause for the observed FL-OGA protein decrease is yet
unknown. Transcription and/or translation of FL-OGA could be reduced
or isoform-specific degradation could be increased. A recentwhole tran-
scriptome sequencing analysis revealed that while the MGEA5 gene
encoding for OGA is not differentially expressed in AD, it shows alterna-
tive splicing in AD [46]. Furthermore, OGA is a substrate for caspase-3
upon induction of apoptosis. However, its cleavage does not affect its
activity as the OGA fragments remain associated [47]. Finding out how
exactly decreased OGA protein levels and O-GlcNAc increase as seen
in this study may contribute to the progression of AD will require
further investigation. Finding answers to these questions will be highly
interesting especially in light of recent animal studies demonstrating
that OGA inhibition rescued memory impairment in a mouse model of
familial AD [48]. In mice that show early amyloid β deposition and
memory deficits, long-term OGA inhibition was initiated well before
cognitive impairment could be detected when amyloid plaque deposi-
tion begins. In addition to its positive effect on memory, OGA inhibition
also decreased amyloid β levels and plaque load and reduced neuroin-
flammation in brain [48]. In a different mouse model focusing on the
tau-related AD pathology, increased tau O-GlcNAc modification by
OGA inhibition correlated with decreased numbers of neurofibrillary
tangles and reduced neuronal loss [49]. As in the Aβ mouse model,
long-term OGA inhibition was initiated at an early time point before
tau pathology was apparent [49]. In contrast to these studies, we ob-
serve OGA decline at a late AD stage whichmay have differential effects
than early OGA inhibition. It would therefore be highly interesting to
analyze the effects of OGA inhibition initiated well after the onset of
AD as this is more likely to be the time point when AD treatment in
humans will be implemented. Interestingly, in a mouse model of pre-
clinical tauopathy OGA inhibition was initiated at a later time point
leading to increased O-GlcNAcylation of brain proteins and mitigation
of several symptoms including reduced body weight and motor deficits
and was beneficial for overall clinical condition of transgenic mice [50].

Investigating the time frame at which OGA declines and augmented
protein O-GlcNAcylation occurs in AD and what role impaired glucose
metabolismmay play in these events will be the subject of further stud-
ies in our laboratory. Whether the observed changes are downstream
consequences of altered metabolism or whether changes in OGA and
O-GlcNAcmay contribute to the progression from healthy to pathologic
states could influence potential therapeutic strategies. In conclusion,
this paper adds to the ongoing discussion of the potential role of
O-GlcNAcylation in AD. Herein we present the first report of decreased
OGA protein level in AD and furthermore demonstrate a significant
correlation between reduced OGA levels and increased cytosolic
O-GlcNAcylation. However, conflicting reports on O-GlcNAcylation in
AD emphasize the need for further, more detailed studies on this
topic. In addition, comprehensive studies of the activity and complex
regulation of O-GlcNAc cycling enzymes in AD are crucial for the imple-
mentation of potential future AD therapeutic strategies involving
O-GlcNAc modulation.
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