Basal Brain Oxidative and Nitrative Stress Levels Are Finely Regulated by the Interplay Between Superoxide Dismutase 2 and p53

Article in Journal of Neuroscience Research · August 2015
DOI: 10.1002/jnr.23627

CITATION
1

READS
123

8 authors, including:

Eugenio Barone
Sapienza University of Rome
60 PUBLICATIONS 1,274 CITATIONS
SEE PROFILE

Fabio Di Domenico
Sapienza University of Rome
90 PUBLICATIONS 1,544 CITATIONS
SEE PROFILE

Marzia Perluigi
Sapienza University of Rome
115 PUBLICATIONS 3,595 CITATIONS
SEE PROFILE

D. Allan Butterfield
University of Kentucky
638 PUBLICATIONS 40,455 CITATIONS
SEE PROFILE

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

Available from: Eugenio Barone
Retrieved on: 08 August 2016
Basal Brain Oxidative and Nitrative Stress Levels Are Finely Regulated by the Interplay Between Superoxide Dismutase 2 and p53

Eugenio Barone,1,2 Giovanna Cenini,3,4,5 Fabio Di Domenico,1 Teresa Noel,5,6 Chi Wang,7 Marzia Perluigi,1 Daret K. St. Clair,5,6 and D. Allan Butterfield3,4,5*

1Department of Biochemical Sciences “A. Rossi-Fanelli,” Sapienza University of Rome, Roma, Italy
2Facultad de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Providencia, Santiago, Chile
3Department of Chemistry, University of Kentucky, Lexington, Kentucky
4Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
5Markey Cancer Center, University of Kentucky, Lexington, Kentucky
6Department of Toxicology, University of Kentucky, Lexington, Kentucky
7Biostatistics Core, Markey Cancer Center, University of Kentucky, Lexington, Kentucky

Superoxide dismutases (SODs) are the primary reactive oxygen species (ROS)-scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals O$_2^-$ to H$_2$O$_2$ and molecular oxygen (O$_2$). Among the three forms of SOD identified, manganese-containing SOD (MnSOD, SOD2) is a homotetramer located wholly in the mitochondrial matrix. Because of the SOD2 strategic location, it represents the first mechanism of defense against the augmentation of ROS/reactive nitrogen species levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2$^{-/-}$) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in the mitochondria for preventing further damage. This study seeks to understand the effects that the partial lack (SOD2$^{-/-}$) or the overexpression (TgSOD2) of MnSOD produces on oxidative/nitrative stress basal levels in different brain isolated cellular fractions (i.e., mitochondrial, nuclear, cytosolic) as well as in the whole-brain homogenate. Furthermore, because of the known interaction between SOD2 and p53 protein, this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of mice carrying the double mutation (p53$^{-/-}$ × SOD2$^{-/-}$ and p53$^{-/-}$ × TgSOD2). We show that each mutation affects mitochondrial, nuclear, and cytosolic oxidative/nitrative stress basal levels differently, but, overall, no change or reduction of oxidative/nitrative stress levels was found in the whole-brain homogenate. The analysis of well-known antioxidant systems such as thioredoxin-1 and Nrf2/HO-1/BVR-A suggests their potential role in the maintenance of the cellular redox homeostasis in the presence of changes of SOD2 and/or p53 protein levels.

Mitochondria are the major source of reactive oxygen species (ROS) under normal physiological conditions, superoxide radicals (O$_2^-$) being the primary ROS produced by this organelle (Holmstrom and Finkel, 2014). Reactive nitrogen species (RNS; nitric oxide synthase [NOS]-produced NO and molecules derived from NO, such as peroxynitrite and NO$_2$) represent the other reactive species widely studied for their role in cellular redox homeostasis (Poon et al., 2004; Calabrese et al., 2007; Holmstrom and Finkel, 2014).

Independently of the locus where they are generated, ROS and RNS are able to spread into the intracellular space, where they play an important role in the activation or inhibition of specific redox signaling-regulated events (e.g., cell proliferation, cell death, gene

Key words: oxidative stress; MnSOD; p53; biliverdin reductase-A; heme oxygenase-1; RRID:AB_10850321; RRID:AB_1840351; RRID:AB_2256876; RRID:AB_10618757; RRID:AB_2049199; RRID:AB_881705; RRID:AB_476744; RRID:AB_958795

© 2015 Wiley Periodicals, Inc.

Significance:

This is the first study highlighting changes that occur with regard to basal oxidative and nitrative stress levels in mice brain following MnSOD partial lack (SOD2$^{-/-}$) or overexpression (TgSOD2). We provide data on how changes occurring in different cellular compartments (mitochondria, nucleus, cytosol) finally impact the status of the whole cell. Furthermore, this study provides new insights into the interconnectivity of MnSOD, p53, and oxidative stress in the brain.

*Correspondence to: Prof. D. Allan Butterfield, Department of Chemistry, Markey Cancer Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055. E-mail: dabcns@uky.edu

Received 29 April 2015; Revised 23 July 2015; Accepted 23 July 2015

Published online 00 Month 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jnr.23627
expression) by directly or indirectly promoting the reversible oxidation/reduction, phosphorylation/dephosphorylation, and nitrosylation/denitrosylation of specific amino acids (Hancock et al., 2001; Calabrese et al., 2007; Holley et al., 2011; Holmstrom and Finkel, 2014). Conversely, if the amount of ROS and RNS exceeds the capacity of the antioxidant defense systems, an imbalanced oxidative system causes damage to cell components (Perluigi et al., 2012; Cobb and Cole, 2015).

Superoxide dismutases (SODs) are the primary ROS-scavenging enzymes of the cell, and they catalyze the dismutation of superoxide radicals O$_2^-$ to H$_2$O$_2$ and molecular oxygen (O$_2$; Holley et al., 2011; Pani and Galeotti, 2011). The three forms of SOD, encoded by different genes, are 1) copper- and zinc-containing SOD (SOD1), 2) extracellular SOD (SOD3), and 3) manganese-containing SOD (MnSOD; SOD2; Holley et al., 2011; Pani and Galeotti, 2011). Because of its strategic localization in the mitochondrial matrix, SOD2 is thought to be a first-line defense for protecting mitochondria against oxidative/nitrative damage (Zorov et al., 2006; Holley et al., 2011), which otherwise would lead to a vicious cycle in which mitochondrial ROS/RNS causes oxidative damage to mitochondrial DNA, leading to further mitochondrial dysfunction and oxidant generation (Miriylala et al., 2011). In line with this, SOD2 has been demonstrated to be the only form of SOD absolutely essential for life (Gregory and Fridovich, 1973; Li et al., 1995; Duttaroy et al., 2003; Holley et al., 2010).

Because of these essential features of SOD2, its role in the brain is of great interest, especially in the context of neuronal energy metabolism. Indeed, neurons rely on an elevated oxidative metabolism (which occurs in the mitochondria) to meet their high energy requirements, with a consequent physiological production of both ROS and RNS (Belanger et al., 2011). Although on the one hand controlled ROS and RNS production is required for the maintenance of synaptic plasticity, long-term potentiation, and neuronal plasticity (Calabrese et al., 2007; Chatoo et al., 2011; Holmstrom and Finkel, 2014), on the other hand the brain is rich in polyunsaturated fatty acid and iron, two features that, coupled with high oxygen usage and a low antioxidant capacity, make the brain particularly susceptible to oxidative damage (Belanger et al., 2011). In this picture, variations of SOD2 activity could affect ROS/RNS levels either positively or negatively, thus driving, at least in part, the fate of the mitochondria and, probably, of the entire neuron. Indeed, alterations of SOD2 activity can result in numerous pathological phenotypes in the brain, such as Alzheimer’s disease, Parkinson’s disease, stroke, or simply aging (Flynn and Melov, 2013). Thus, although the regulation of oxidative stress alone does not seem to prevent specific neurodegenerative disorders, it may provide some benefit in slowing the progression of these diseases and help to maintain the bioenergetic function of neurons (Flynn and Melov, 2013).

Although previous articles describing studies performed with heterozygous SOD2 knockout mice and with transgenic mice have reported on the effects associated with the reduction (Li et al., 1995; Van Remmen et al., 2003; Jang and Van Remmen, 2009; Holley et al., 2010) or the overexpression (Jang and Van Remmen, 2009; Jang et al., 2009) of SOD2 in different tissues, no published studies have evaluated the impact in the brain under basal conditions.

This work seeks to evaluate the effects that the partial lack (SOD2$^{-/-}$) or the overexpression (TgSOD2) of SOD2 produce on the basal levels of oxidative and nitrative stress in mouse brain. Furthermore, because of the known interaction between SOD2 and p53 protein (Zhao et al., 2005; Holley et al., 2010; Miriyala et al., 2011; Pani and Galeotti, 2011) and from previous studies by our group demonstrating for the first time that the lack of p53 significantly reduces basal protein oxidation and lipid peroxidation in the brain of p53$^{-/-}$ mice at least in part through the upregulation of SOD2 (Barone et al., 2012; Fiorini et al., 2012), this study seeks to clarify the impact that the double mutation has on oxidative/nitrative stress levels in the brain of p53$^{-/-} \times$ SOD2$^{-/-}$ and p53$^{-/-} \times$ TgSOD2 mice. We performed studies to test the hypothesis that changes with regard to oxidative/nitrative stress levels are linked to the regulation of an integrated network of mechanisms that are under the control of genes strictly involved in preserving cellular homeostasis during stressful conditions, named “vitagenes,” such as those encoding for thioredoxin-1, members of the heme-oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system, and nuclear factor erythroid 2-related factor 2 (Nrf-2).

MATERIALS AND METHODS

Chemicals

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise stated. Nitrocellulose membranes were obtained from Bio-Rad (Hercules, CA). Anti-rabbit IgG horseradish peroxidase conjugate secondary antibody was obtained from GE Healthcare (Piscataway, NJ).

Animals

Heterozygous mice p53$^{-/-}$, p53$^{-/+}$ × SOD2$^{+/+}$, and p53$^{-/+}$ × TgSOD2 overexpressors were gifts from Dr. Holly Van Remmen, then at the University of Texas San Antonio Health Sciences Center. p53$^{-/-}$ Mice were crossed with p53$^{-/+}$ × SOD2$^{+/-}$ and p53$^{-/+}$ × TgSOD2-overexpressing mice to create p53$^{-/-}$ knockout mice and wild-type (WT) littermates. Crosses of p53$^{-/-}$ with SOD2$^{+/-}$ heterozygous knockdown and of p53$^{-/-}$ knockout mice with TgSOD2-overexpressing mice were used to create p53$^{-/-} \times$ SOD2$^{+/-}$- and p53$^{-/-} \times$ TgSOD2-overexpressing mice, respectively, which were used in the present studies. Dr. Tyler Jacks of the Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, initially generated the p53$^{-/-}$ mice on a C56BL/6background. Male mice between 10 and 12 weeks old were used in all studies. All animal experimental procedures were approved by the Institutional Animal Care and Use Committee of the University of Kentucky and followed the NIH Guidelines for the care and use of laboratory animals.
Cellular Fractions, Isolation, and Purification

Mice were humanely euthanized and the brain was promptly removed. Cellular fractions were immediately isolated from the freshly obtained brain by using Percoll gradients (Sim, 1990), with minor modifications. Whole brain was suspended in ice-cold isolation buffer (250 mM sucrose, 10 mM HEPES, and 1 mM potassium EDTA, pH 7.2) and homogenized by six passes with a motor-driven Teflon pestle. The homogenate was then centrifuged at 1,330 g for 3 min at 4°C. The supernatant was carefully decanted and saved, and the resulting pellet was resuspended in isolation buffer and once more centrifuged at 1,330 g for 3 min. The resulting pellet (nuclear fraction) was saved, and the supernatants from both spins were combined and spun at 21,200 g for 10 min at 4°C. The supernatant (cytosolic fraction) was saved, and the resulting pellet (containing mitochondria) was resuspended in 15% Percoll solution (v/v in isolation buffer) and layered onto discontinuous Percoll gradients of 23% and 40% Percoll (v/v in isolation buffer). Gradients were spun at 30,700 g for 5 min at 4°C. At the 23–40% Percoll interface, mitochondria were isolated and resuspended in respiration buffer (250 mM sucrose, 2 mM magnesium chloride, 20 mM HEPES, and 2.5 mM phosphate buffer, pH 7.2) and centrifuged at 16,700 g for 10 min at 4°C. The pellet was resuspended in respiration buffer and centrifuged at 6,900 g for 10 min at 4°C, and the resulting pellet was washed in phosphate-buffered saline (PBS) at 6,900 g for 10 min at 4°C. The pellet was finally resuspended in 0.5–1.0 ml PBS. Protein concentration was determined by the Pierce BCA method (Pierce, Rockford, IL).

Slot-Blot Analysis

Total protein carbonyl (PC) levels. Samples (5 µl) of each fraction as well as of whole homogenate, 12% SDS (5 µl), 5 µl modified Laemmli buffer containing 0.125 M Tris base, pH 6.8, 4% (v/v) SDS, and 20% (v/v) glycerol were incubated for 20 min at room temperature and were loaded (250 ng) into each well on a nitrocellulose membrane in a slot-blot apparatus under vacuum. The membrane was treated as described above and incubated with an antiprotein-bound HNE polyclonal antibody (1:2,000; catalog No. NB100–63093; RRID:AB_958795) or an anti-3-NT antibody (1:2,000; catalog No. N5538; RRID:AB_1840351) in PBS for 90 min. The membranes were further developed and quantified as described above. A faint background staining resulting from the antibody alone was observed, but because each sample had a control this minor effect was controlled.

Western Blot Analysis

For Western blot analyses, protein levels were analyzed based on their cellular localization in the whole cell. HO-1 and thioredoxin-1 in membrane fractions, and BVR-A and Nrf-2 in both cytosolic and nuclear fractions. Briefly, 50 µg protein was denaturated in sample buffer for 5 min at 100°C, and proteins were separated on 12% precast Criterion gels (Bio-Rad) by electrophoresis at 100 mA for 2 hr in 3-(N-morpholino)propanesulfonic acid buffer (Bio-Rad) into the Bio-Rad apparatus. The proteins from the gels were then transferred to nitrocellulose membrane with the Transblot-Blot SD semidy transfer cell (Bio-Rad) at 20 mA for 2 hr. Subsequently, the membranes were blocked for 1 hr at 4°C with fresh blocking buffer consisting of 3% BSA in PBS. The membranes were incubated at room temperature in PBS for 2 hr with the following primary antibodies, as separate experiments: polyclonal anti-rabbit thioredoxin 1 (1:1,000; catalog No. sc-20146; RRID:AB_2256876; Santa Cruz Biotechnology, Santa Cruz, CA), polyclonal anti-rabbit HO-1 (1:1,000; catalog No. ADI-SPA-895; RRID:AB_10618757; Enzo Life Sciences, Farmingdale, NY), polyclonal anti-rabbit BVR-A (1:5,000; catalog No. ab90491; RRID:AB_2049199; Abcam, Cambridge, MA), polyclonal anti-rabbit Nrf-2 (1:1,000; catalog No. ab31163; RRID:AB_881705; Abcam), and polyclonal anti-rabbit β-actin (1:2,000; catalog No. A5441; RRID:AB_476744). The membranes were then washed three times for 5 min each with PBST, followed by incubation with an alkaline phosphate- or horseradish peroxidase-conjugated secondary antibody (1:5,000) in PBST for 2 hr at room temperature. Membranes were then washed three times in PBST for 3 min each and developed with BCIP/NBT color developing reagent for alkaline phosphatase secondary antibody or ECL plus Western blotting detection reagents for horseradish peroxidase-conjugated secondary antibody. Blots were dried, scanned in TIF format with Adobe Photoshop on a Canoscan 8800F (Canon, Tokyo, Japan) or Storm UV transilluminator (λex = 470 nm, λem = 618 nm; Molecular Dynamics, Sunnyvale, CA) for chemiluminescence. The images were quantified in Image Quant TL 1D v.7.0 (GE Healthcare). The optical density of bands was calculated as volume (optical density × area) adjusted for the background.

Brain Oxidative Stress and MnSOD

Total protein-bound 4-hydroxy-2-nonenals (HNE) and 3-nitrotyrosine (3-NT) levels. Samples (5 µl) of each fraction as well as of whole homogenate, 12% SDS (5 µl), 5 µl modified Laemmli buffer containing 0.125 M Tris base, pH 6.8, 4% (v/v) SDS, and 20% (v/v) glycerol were incubated for 20 min at room temperature and were loaded (250 ng) into each well on a nitrocellulose membrane in a slot-blot apparatus under vacuum. The membrane was treated as described above and incubated with an antiprotein-bound HNE polyclonal antibody (1:2,000; catalog No. NB100–63093; RRID:AB_958795) or an anti-3-NT antibody (1:2,000; catalog No. N5538; RRID:AB_1840351) in PBS for 90 min. The membranes were further developed and quantified as described above. A faint background staining resulting from the antibody alone was observed, but because each sample had a control this minor effect was controlled.

Journal of Neuroscience Research
Antibody Characterization

See Table I for a list of all antibodies used. With regard to slot-blot analyses for the evaluation of total PC, HNE, and 3-NT levels in our samples, each of the antibodies used (anti-DNP, anti-HNE, and anti-3-NT) recognizes specific oxidative modifications (see Table I) to protein structure, resulting in higher or lower colored spots depending on the levels of the modification assayed (Sultana and Butterfield, 2008). For Western blot of mouse brain isolated fractions, the antithioredoxin-1 antibody recognizes a single band of ~12 kDa, the anti-HO-1 antibody recognizes a single band of ~32 kDa, the anti-BVR-A antibody recognizes a single band of ~33 kDa, the anti-Nrf-2 antibody recognizes a single band of ~68 kDa, and the anti-β-actin antibody recognizes a single band of ~42 kDa.

Table I. Primary Antibodies Used

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Description of immunogen</th>
<th>Source, host species, catalog No., clone or lot No., RRID</th>
<th>Concentration used</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNP adducts</td>
<td>KLH-conjugated DNP</td>
<td>EMD Millipore, mouse, MAB2223, clone 9H8.1, RRID:AB_10850321</td>
<td>1:100 (Slot-blot assay)</td>
</tr>
<tr>
<td>HNE</td>
<td>HNE conjugate</td>
<td>Novus Biologicals (Littleton, CO), goat, NB100-63093, RRID:AB_958795</td>
<td>1:2,000 (Slot-blot assay)</td>
</tr>
<tr>
<td>3-NT</td>
<td>3-NT-KLH</td>
<td>Sigma-Aldrich, mouse, N5538, clone 18G4, RRID:AB_1840351</td>
<td>1:2,000 (Slot-blot assay)</td>
</tr>
<tr>
<td>Thioredoxin-1</td>
<td>Amino acids 1–105 representing full-length thioredoxin of human origin</td>
<td>Santa Cruz Biotechnology, rabbit, sc-20146, RRID:AB_2256876</td>
<td>1:1,000 (WB)</td>
</tr>
<tr>
<td>HO-1</td>
<td>Recombinant rat HO-1 (Hsp32) lacking the membrane-spanning region</td>
<td>Enzo Life Sciences, rabbit, ADI-SPA-895, RRID:AB_10618757</td>
<td>1:1,000 (WB)</td>
</tr>
<tr>
<td>BVR-A</td>
<td>Recombinant rat biliverdin reductase expressed in Escherichia coli</td>
<td>Abcam, rabbit, ab90491, RRID:AB_2049199</td>
<td>1:5,000 (WB)</td>
</tr>
<tr>
<td>Nrf-2</td>
<td>Synthetic peptide: TL YLEVFSMLRD EDGKPSYP, corresponding to amino acids 569–588 of human Nrf-2</td>
<td>Abcam, rabbit, ab31163, RRID:AB_881705</td>
<td>1:1,000 (WB)</td>
</tr>
<tr>
<td>β-Actin</td>
<td>Synthetic β-actin cytoplasmic N-terminal peptide Ac-Asp-Asp-Ile-Ala-Ala-Leu-Val-Ile-Asp-Asn-Gly-Ser-Gly-Lys conjugated to KLH</td>
<td>Sigma-Aldrich, mouse, A5441, clone AC-15, RRID:AB_476744</td>
<td>1:2,000 (WB)</td>
</tr>
</tbody>
</table>

Statistical Analysis

Data are expressed as mean ± SE of six independent samples per group. All statistical analyses were performed in...
RESULTS

Basal Oxidative and Nitrative Stress Levels Evaluated in Brain Isolated Mitochondria

To clarify the contribution of SOD2 to basal brain oxidative and nitrative stress, PC, protein-bound HNE, and 3-NT levels were first assayed in the mitochondrial fraction isolated from brain of mice with overexpressed (TgSOD2) and SOD2 heterozygous knockout (SOD2+/−) mice and of mice carrying the double mutation (p53−/− × TgSOD2, p53−/− × SOD2−/−). PC (A), protein-bound HNE (B), and 3-NT (C) levels measured in the mitochondrial fraction. PC (D), HNE (E), and 3-NT (F) levels measured in the cytosolic fraction. Densitometric values are percentage of the WT group, set as 100%. Data are mean ± SE of three replicates of each individual sample (n = 6) per group. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. WT or the corresponding single-mutant mice (ANOVA).

Similary, an increase of PC in SOD2−/+ mice was observed (Fig. 1A). The mice carrying the double mutation were characterized by a different behavior. Indeed, a significant ~40% reduction of PC (Fig. 1A) together with an increase of 3-NT levels (~30%; Fig. 1C) was observed in mitochondria from p53−/− × SOD2−/+ mice compared with SOD2−/+ mice. Furthermore, mitochondria from p53−/− × TgSOD2 mice showed a reduction of ~30% in 3-NT levels compared with TgSOD2 (Fig. 1C).

Basal Oxidative and Nitrative Stress Levels Evaluated in Nuclei and Cytoplasm Isolated From Brain

To determine whether changes of basal oxidative and nitrative stress levels in mitochondria could also
promote changes in other subcellular compartments, PC, protein-bound HNE, and 3-NT levels were evaluated in both nuclear and cytosolic fractions. The nuclear fraction was characterized by a consistent increase of protein-bound HNE levels (~25%) in p53\(^{-/-}\) × TgSOD2, p53\(^{-/-}\) × SOD2\(^{-/-}\) mice compared with WT controls (Fig. 2B). p53 Deletion resulted in a significant increase of nuclear PC (~30%) and protein-bound HNE (~25%) in the nucleus of p53\(^{-/-}\) × SOD2\(^{-/-}\) mice compared with SOD2\(^{-/-}\) mice (Fig. 2A,B). Conversely, deletion of p53 in TgSOD2 mice produced a significant reduction of 3-NT levels in the nucleus (p53\(^{-/-}\) × TgSOD2 vs. TgSOD2; Fig. 2C). In contrast to the changes observed in the nuclear and mitochondrial fractions, the cytosolic fraction was characterized by an overall reduction of the oxidative stress levels in the mice carrying the double mutation. In particular, a consistent reduction of protein-bound HNE levels was observed in both p53\(^{-/-}\) × TgSOD2 (~45%) and p53\(^{-/-}\) × SOD2\(^{-/-}\) (~30%) compared with both WT and single transgenic mice (Fig. 2E). Similarly, a reduction of ~15% was observed for PC in the same mice compared with WT mice (Fig. 2D). Furthermore, a decrease of ~10% in 3-NT levels was found in the cytosolic fraction isolated from p53\(^{-/-}\) × TgSOD2 compared with TgSOD2 mice (Fig. 2F).

Basal Oxidative and Nitrative Stress Levels Evaluated in Whole Homogenate From Brain

We then analyzed oxidative and nitrative stress levels in whole-brain homogenate to determine whether such levels reflect a sum of the events happening in the different cellular compartments. As shown in Figure 3A, a significant decrease of ~25% in PC levels was observed in p53\(^{-/-}\) × SOD2\(^{-/-}\) compared with WT mice. No significant changes were observed for HNE levels among all groups (Fig. 3B). A reduction of 3-NT levels occurred in SOD2\(^{+/+}\) (~30%) as well as in p53\(^{-/-}\) × TgSOD2 (~25%) and in p53\(^{-/-}\) × SOD2\(^{-/-}\) (~40%) compared with WT mice (Fig. 3C). A reduction trend for both protein-bound HNE and 3-NT levels in the brain of p53\(^{-/-}\) × TgSOD2 and p53\(^{-/-}\) × SOD2\(^{-/-}\) compared with their matched single transgenic TgSOD2 and SOD2\(^{-/-}\) mice was observed, although statistical significance was not achieved (Fig. 3B,C).

Proteins Involved in Cell Stress Response: the HO-1/BVR-A System and Thioredoxin-1

From the results obtained with regard to oxidative/nitrative stress levels in the subcellular compartments as well as in the whole homogenate, we sought to understand whether the observed changes could be associated with alterations of the levels of well-known proteins involved in cell stress response, such as the HO-1/BVR-A system and thioredoxin-1. Both HO-1 and thioredoxin-1 are membrane-bound proteins, whereas BVR-A is cytosolic. As shown in Figure 4A, HO-1 protein levels were significantly reduced in SOD2\(^{-/-}\) mice by ~25% compared with WT mice. However, deletion of p53 in SOD2\(^{-/-}\) mice promoted an upregulation of HO-1 protein (p53\(^{-/-}\) × SOD2\(^{-/-}\) vs. SOD2\(^{-/-}\)) to levels comparable to those observed in WT mice (Fig. 4A). In addition, the increase of HO-1 protein levels in p53\(^{-/-}\) × SOD2\(^{-/-}\) mice was negatively associated with PC levels in mitochondrial fraction (Pearson r = −0.58; Table II).
Similarly to HO-1, thioredoxin-1 protein levels were almost doubled in p53^{−/−} × SOD2^{+/+} compared with SOD2^{−/+} mice (Fig. 4B), and this effect was significantly and negatively associated with PC levels in whole-brain homogenate (Pearson r = −0.65; Table II). A decrease of ~20% was also observed in SOD2^{−/−} compared with WT mice, although this value did not reach statistical significance (Fig. 4B).

The analysis of BVR-A revealed a trend that matched the elevation of its partner, HO-1. Indeed, the major result was the elevation of BVR-A protein levels observed in the cytosolic fraction of p53^{−/−} × SOD2^{−/+} mice compared with both WT (~35%) and SOD2^{−/+} (~45%) mice (Fig. 5A). Increased cytosolic BVR-A in p53^{−/−} × SOD2^{−/+} mice was significantly and negatively associated with 3-NT (Pearson r = −0.74), and PC (Pearson r = −0.62) levels evaluated in whole-brain homogenate obtained from WT and SOD2^{−/+} mice, respectively (Table II). These observations are in agreement with the well-known function of the HO-1/BVR-A system, whose final product, bilirubin, has been shown to possess significant antioxidant and antinitrative activities (Stocker et al., 1987a,b; Dore et al., 1999; Takahashi et al., 2000; Mancuso et al., 2003; Barone et al., 2009).

Because BVR-A is able to translocate into the nucleus, where it regulates the expression of stress-responsive genes such as HO-1 (Tudor et al., 2008) and iNOS (Gibbs et al., 2012; Di Domenico et al., 2013), we also evaluated nuclear BVR-A levels. Our results show a significant increase of ~80% in BVR-A nuclear levels in p53^{−/−} × SOD2^{−/+} compared with both WT and SOD2^{−/+} mice (Fig. 4B). The increased translocation of BVR-A observed in the nucleus of p53^{−/−} × SOD2^{−/+} mice was positively associated with the elevation of HO-1 protein levels (Pearson r = 0.82; Table II). Consistent with this result and with the antioxidant role of BVR-A, several significant and negative correlations between BVR-A levels and oxidative stress markers were found (Table II), suggesting that, among the proteins analyzed, BVR-A could have a main role in cell stress response because of its pleiotropic functions (Kapitulnik and Maines, 2009; Barone et al., 2014).

Because both HO-1 and thioredoxin-1 levels are under control of the Nrf-2 nuclear transcriptional factor, we evaluated Nrf-2 levels both in the cytosolic and in the nuclear fractions. A significant 25% reduction of Nrf-2 levels in SOD2^{−/−} compared with WT mice was observed (Fig. 6A). Evaluation of nuclear Nrf-2 levels revealed a consistent reduction in all the transgenic animals compared with WT animals (Fig. 6B).

DISCUSSION

This study provides new data on changes of basal oxidative and nitritative stress levels as a consequence of reduced or increased SOD2 levels in mouse brain. Specifically, we show that 1) basal oxidative and nitritative stress levels are differentially modulated depending on the cellular compartment examined; 2) these differences could be
dependent, at least in part, on a different modulation of systems involved in the cell stress response; and 3) p53 affects the redox status of the cells, depending on SOD2 levels.

Mitochondria are both oxygen sensors and oxygen consumers, being the place deputed to the respiration processes and thus the dysregulation of SOD2 activity, which could alter oxygen concentration, resulting in adaptive responses aimed to protect the whole cell from further damage (Chandel et al., 2000).

Our data appear to be in line with this concept, given that we found increased protein oxidation (Fig. 1A) and increased protein nitration (Fig. 1C) only in mitochondria isolated from SOD2/−/− and TgSOD2 mice, respectively. Indeed, these changes do not affect the other cellular compartments (i.e., nucleus and cytoplasm; Fig. 2). Rather, an overall reduction of 3-NT levels in the whole-brain homogenate was observed (Fig. 3C). The increase of mitochondrial PC in SOD2/−/− mice is consistent with the proposed antioxidant role of SOD2 (Williams et al., 1998; Miao and St. Clair, 2009), whereas the increase of mitochondrial 3-NT levels in TgSOD2 mice could result from the well-known ability of SOD2-derived H2O2 to induce NOS and thus NO production (Shimizu et al., 2003; Ha et al., 2005; Chuchrao et al., 2007). Although the observation that no changes with regard to PC or protein-bound HNE levels were found in the whole-brain homogenate obtained from both SOD2/−/+ and TgSOD2 mice is in agreement with a previous work (Ibrahim et al., 2013), it remains to be understood why a reduction of 3-NT levels has been observed.

One conceivable explanation comes from the differential effects produced by neurons and astrocytes. Our results were obtained in cellular fractions isolated from the whole-brain homogenate, and, because astrocytes outnumber neurons in the brain (Nedergaard et al., 2003), it is conceivable that this difference in terms of quantity would affect the final outcomes, probably resulting from compensation or adaptive mechanisms. For example, it has previously been reported that the relative abundance of newly born astrocytes is five- to ninefold higher in SOD2/−/+ mice compared with WT controls (Fishman et al., 2009). Unfortunately, we do not have any data on that from the other mouse models considered in this study, so we can only speculate about different possibilities. Because astrocytes are responsible for vital functions in the central nervous system, including glutamate, ion and water homeostasis, defense against oxidative stress, energy storage in the form of glycogen; scar formation, tissue repair, modulation of synaptic activity via the release of gliotransmitters, and synapse formation and remodeling (Belanger et al., 2011), a variation in astrocyte number could greatly impact the observed results. However, the other side of the coin must be considered. Two main aspects, very different between neurons and astrocytes, could be helpful in explaining the observed variations on basal oxidative/nitrative stress levels: the energetic metabolism and the antioxidant content. Indeed, although neurons rely on oxidative metabolism to meet their high energy requirements, astrocytes do not because their profile is highly glycolytic (Belanger et al., 2011). Paradoxically, neurons display limited defense mechanisms against oxidative stress compared with astrocytes. Indeed, astrocytes are characterized by higher levels of various antioxidant molecules and ROS-detoxifying enzymes such as glutathione (GSH), HO-1, GPx, GSH-S-transferase, catalase, and thioredoxin-1 (Belanger et al., 2011). In this scenario, changes in basal SOD2 levels/activity, which seem to affect mainly mitochondria oxidative/nitrative stress levels (Fig. 1), could be more deleterious for neurons. Indeed, because of their activities, neurons sustain a high rate of oxidative metabolism, so they appear to be very sensitive to mitochondrial damage (Belanger et al., 2011). On the other hand, this increase observed in mitochondrial oxidative/nitrative stress levels can be blunted by astrocytes, which, being more resistant than neurons, could provide the antioxidant defense to avoid further damage (Belanger et al., 2011). This hypothesis appears to be in line with our results in the whole-brain homogenate when any increase of PC, HNE, or 3-NT has been observed (Fig. 3).

Although this study provides compelling evidence for the role of oxidative/nitrative stress in brain

TABLE II. Significant Correlations Found Between the Markers of Oxidative/Nitrosative Stress and the Proteins Involved in Cell Stress Response

<table>
<thead>
<tr>
<th>Groups</th>
<th>Variables</th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>Pearson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT vs. p53/−/− × SOD2/−/+</td>
<td>BVR-A cytosolic</td>
<td>3-NT full homogenate</td>
<td>−0.74</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>SOD2/−/+ vs. p53/−/− × SOD2/−/+</td>
<td>BVR-A cytosolic</td>
<td>PC full homogenate</td>
<td>−0.62</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>WT vs. p53/−/− × SOD2/−/+</td>
<td>BVR-A nuclear</td>
<td>HNE cytosolic</td>
<td>−0.61</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>SOD2/−/+ vs. p53/−/− × SOD2/−/+</td>
<td>BVR-A nuclear</td>
<td>3-NT cytosolic</td>
<td>−0.70</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>SOD2/−/+ vs. p53/−/− × SOD2/−/+</td>
<td>HO-1</td>
<td>PC mitochondrial</td>
<td>−0.58</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>SOD2/−/+ vs. p53/−/− × SOD2/−/+</td>
<td>Thioredoxin-1</td>
<td>PC full homogenate</td>
<td>−0.65</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>SOD2/−/+ vs. p53/−/− × SOD2/−/+</td>
<td>BVR-A nuclear</td>
<td>HO-1</td>
<td>0.82</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

Journal of Neuroscience Research
Fig. 5. Cytosolic (A) and nuclear (B) BVR-A protein levels measured in the brains of WT, SOD2 transgenic (TgSOD2), and SOD2 heterozygous knockout (SOD2^{−/−}) mice and of mice carrying the double mutation (p53^{−/−} × TgSOD2, p53^{−/−} × SOD2^{−/−}), as described in Materials and Methods. Representative gels are shown. Protein levels were normalized to the loading control, β-actin. Densitometric values are percentage of the WT group, set as 100%. Data are mean ± SE of n = 6 individual samples per group. *P < 0.05, **P < 0.01 vs. WT or the corresponding single-mutant mice (ANOVA).

Fig. 6. Cytosolic (A) and nuclear (B) Nrf-2 protein levels measured in the brains of WT, SOD2 transgenic (TgSOD2), and SOD2 heterozygous knockout (SOD2^{−/−}) mice and of mice carrying the double mutation (p53^{−/−} × TgSOD2, p53^{−/−} × SOD2^{−/−}), as described in Materials and Methods. Representative gels are shown. Protein levels were normalized to the loading control, β-actin. Densitometric values are percentage of the WT group, set as 100%. Data are mean ± SE of n = 6 individual samples per group. *P < 0.05, **P < 0.01, ***P < 0.001 vs. WT or the corresponding single-mutant mice (ANOVA).
physiopathology, we cannot exclude, as a plausible consequence, a role for nitrosative stress. Mild oxidative stress, which can derive from mitochondrial dysfunction, is able to induce different cellular signaling pathways and molecular mechanisms that mediate hormetic adaptive response (V. Calabrese et al., 2010, 2012; E.J. Calabrese et al., 2012). This response typically involves the synthesis of various stress resistance proteins as the products of various genes, a group of genes strictly involved in preserving cellular homeostasis during stressful conditions, including both thioredoxin-1 and the HO-1/BVR-A system (V. Calabrese et al., 2010, 2012; E.J. Calabrese et al., 2012; Edrey et al., 2014). Thioredoxin-1 is involved in a variety of redox-dependent pathways, such as supplying reducing equivalents for ribonucleotide reductase and peptide methionine sulfoxide reductase, the latter being involved in antioxidant defense (Armer and Holmgren, 2000; Hirata et al., 2002). Similarly, the HO-1/BVR-A system catalyzes the transformation of the pro-oxidant heme into bilirubin (BR; Barone et al., 2014), which has been shown to possess strong antioxidant and antinitrative properties (Stocker et al., 1987a,b; Dore et al., 1999; Takahashi et al., 2000; Barone et al., 2009; Mancuso et al., 2012). In addition to this canonical role, this system has several pleiotropic functions that are of interest in the regulation of the cell stress response (for review see Kapitulnik and Maines, 2009; Gozzelino et al., 2010).

Despite the observed changes in mitochondrial oxidative and nitrative stress marker levels in SOD2+/− mice and TgSOD2 mouse brain (Fig. 1A,C), the analysis of thioredoxin-1 and the HO-1/BVR-A system did not reveal any particular difference compared with WT, with the exception of a significant reduction of HO-1 in SOD2+/− mice (Fig. 4A). These lines of evidence seem to be supported by the reduced translocation of Nrf-2 protein to the nucleus (Fig. 6B). Indeed, following increased oxidative/nitrative stress levels, Nrf-2 is one of the main transcription factors that translocates into the nucleus, where it recognizes the antioxidant response element sequence on the promoter of the genes encoding for both HO-1 and thioredoxin-1, thus promoting their expression (Kim et al., 2001; Sun et al., 2002; Calabrese et al., 2009). Data for Nrf-2 seem to be in agreement with what we observed in the whole-brain homogenate (Fig. 3), suggesting that, under basal conditions, the reduction or the increase of SOD2 protein levels produces changes in mitochondria, which finally do not spread to the rest of the cell in terms of oxidative and nitrative stress. Because we are looking at a single age (6 months) without stimulation with toxic stimuli and because the evaluation of the oxidative/nitrative stress markers is an index of the oxidative damage accumulated over the time, it is conceivable that mitochondrial damage occurs quite early in the life of these mice as a consequence of SOD2 dysregulation and that this event is followed by the activation of the antioxidant response to avoid further damage. Thus, the absence of variations with regard to thioredoxin-1 and the HO-1/BVR-A system that are observed at 6 months of age could be the result of previous changes. These findings are also in line with the hypothesized protective role suggested for astrocytes, which could provide neurons with antioxidants (i.e., BR or GSH) as cited above (Belanger et al., 2011).

CONCLUSIONS

This study sheds light on the intricate mechanism(s) contributing to the maintenance of the redox status in the brain. The interconnectivity between p53 and SOD2 and the essential role of this latter protein as “guardian of the powerhouse” (Holley et al., 2011) for preventing cellular damage are further supported by our findings that, in the absence of p53 and reduced SOD2 levels, the cell must
activate other antioxidant systems, including the thioredoxin-1 and HO-1/BVR-A systems.

CONFLICT OF INTEREST STATEMENT
All authors state that they have no conflicts of interest associated with the research presented in this article.

ROLE OF AUTHORS
All authors had full access to all the data in this study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: EB, DAB. Acquisition of data: EB, GC, FDD. Analysis and interpretation of data: EB, GC, TN. Drafting of the manuscript: EB, DS, DAB. Critical revision of the article for important intellectual content: MP, DS, DAB. Statistical analysis: EB, MP, CW. Obtained funding: DS, DAB. Study supervision: DAB.

REFERENCES

Journal of Neuroscience Research

