Susan Odom

saodom0's picture
Education: 
B.S. University of Kentucky, 2003
Ph.D. Georgia Institute of Technology, 2008
University of Illinois, postdoctoral researcher, 2008-2011
Graduate Training: 
physical organic chemistry
Biography: 

My research focuses on the synthesis and evaluation of materials for energy storage applications including electrolyte additives for overcharge protection in lithium-ion batteries and electroactive materials in non-aqueous redox flow batteries.  We study the reactions of organic radical cations as synthetic intermediates and also to get an idea of what kinds of reactions occur in these oxidized states in battery environments.  We also study the conversion of electrical energy to thermal energy and the catalysis of CO2 hydration with carbonic anhydrase mimics.

Research: 

http://www.chem.uky.edu/research/odom/index.html

Despite their prevalence in consumer electronics, which ranges from cell phones to laptops to electric vehicles, secondary Li-ion batteries need improvement in order to extend their lifetimes. Each time a Li-ion battery charges and discharges, the liquid electrolyte (often carbonate solvents with lithium salts) partially decomposes, contributing to the formation of a solid electrolyte interface (SEI) layer between the electrodes and electrolyte. The cause for decomposition is that the electrolyte solvents are unstable in the voltages of lithium ion battery operation, which are generally quite reducing. We are developing additives for protection during normal cycling and during battery overcharge, when the electrical potential one or more batteries in a series is raised beyond the end-of-charge potential of the cathode. Operating in this overcharge results in electrolyte oxidation and increased temperatures, which can lead battery failure.

In addition to the decrease in battery lifetime, this failure mechanism can be dangerous if batteries ignite, causing a cascade of thermal runaway events in neighboring batteries. Given the size of the batteries in electric and hybrid electric vehicles (about 200 kg), thermal runaway is a major safety concern due to the large amount of reactive material within one battery pack. We are therefore improving the stability and efficacy of electrolyte additives through structural modifications for steric protection of reactive groups and electronic modification through the introduction of electron donating or withdrawing substituents. Involvement in this project can range from the synthesis of new small molecules as electrolyte additives, battery fabrication, and characterization of battery cycling performance and additive reactivity.

In addition to increasing battery lifetimes and preventing failure, ultimately some batteries will fail, whether silently or violently. It is the violent failure mechanisms we need to prevent, both for cost and safety reasons. We are therefore working on the development of small molecule additives for shutdown of Li-ion mobility, either in response to increases in temperature or battery potentials that are beyond a certain threshhold. We are also interested in developing new separators – the microporous layer (often polymeric) between battery electrodes that keeps a battery from short circuiting – that would allow for temporary or permanent Li-ion battery shutdown when a battery is compromised.

My research projects use organic chemistry, polymer chemistry, and spectroscopy to solve problems in materials science and engineering.  I endeavor to utilize information on the basic structure and electronic properties of conjugated organic molecules in systems that have relevance to applications in lithium-ion (Li-ion) batteries. My group uses information to assist in the design of new materials for critical applications. Members of my lab will have opportunities to synthesize small organic compounds and polymers, perform spectroscopic and analytical experiments, and incorporate successful materials Li-ion batteries. While I am an organic chemist by degree, my research experience has included spectroscopic characterization, the fabrication and testing of devices such as li-ion batteries and organic LEDs, and mechanical testing of polymers. I encourage my students to work collaborate with groups at the Center for Applied Energy Research and Argonne National Laboratory, among others, to help them understand the broader implications of their research and to learn new techniques.

Selected Publications: 

Lippert, C. A.; Liu, K.; Sharma, M.; Parkin, S. R.; Remias, J. E.; Brandewie, C. M.; Odom, S. A.;* Liu, K.* Cat. Sci. & Tech., manuscript accepted, July 29, 2014.

Ergun, S.; Elliottt, C. F.; Kaur, A. P.; Parkin, S. R.; Odom, S. A.* "Controlling Oxidation Potentials in Redox Shuttle Candidates for Lithium-Ion Batteries." J. Phys. Chem. C. 2014118, 14824-14832. DOI: 10.1021/jp503767h

Ergun, S.; Elliott, C.N.; Kaur, A.P.; Parkin, S.R.; Odom, S.A.* "Overcharge Performance of 3,7-Disubstituted N-Ethylphenothiazine Derivatives in Lithium-Ion Batteries." Chem. Commun. 2014, 50, 5339-5341. Emerging Investigators Issue, DOI: 10.1039/C3CC47503D

Odom, S.A;* Ergun, S.; Poudel, P.P.; Parkin, S.R. "A Fast, Inexpensive Method for Predicting Overcharge Performance in Lithium-Ion Batteries." Energy Environ. Sci. 2014, 7, 760-767. DOI: 10.1039/C3EE42305K

Abouimrane, A.; Odom, S.A; Tavassool, H.; Schulmerich, M.C.; Bhargava, R.; Gewirth, A.A.; Moore, J.S.,* Amine, K.* "3-Hexylthiophene as a Stabilizing Additive for High Voltage Cathodes for Lithium-Ion Batteries." J. Electrochem. Soc. 2013, 160, A168-A277. DOI: 10.1149/2.039302jes

Odom, S.A.; Chayanupatkul, S; Blaiszik, B.J.; Zhao, O.; Jackson, A.C.; Braun, P.V.; Sottos, N.R.; White, S.R.;* Moore, J.S.*  “A Self-Healing Conductive Ink.” Adv. Mater. 2012,24, 2578-2581.Cover Article. DOI: 10.1002/adma.201200196

Esser-Kahn, A.P.; Odom, S.A.; Sottos, N.R.; White,  S.R.; Moore, J.S. “Triggered Release from Polymer Capsules.” Macromolecules, 2011, 44, 5539–5553, cover article. DOI: 10.1021/ma201014n

Odom, S.A.; Caruso, M.M.; Finke, A.D.; Prokup, A.R.; Ritchey, J.A.; Leonard, J.R.; White, S.R.; Sottos, N. R.; Moore, J. S. “TTF and TCNQ Microcapsules for Restoration of Conductivity to Mechanically Damaged Electronic Materials.” Adv. Funct. Mater. 2010, 20, 1721–1727.  Cover Article.  DOI: 10.1002/adfm.201000159

Kryger, M.J.; Ong, M.T.; Odom, S.A.; Sottos, N.R.; White, S.R.; Martinez, T.J.; Moore, J.S. “Masked Cyanoacrylates Unveiled by Mechanical Force.” J. Am. Chem. Soc. 2010, 132, 4558-4559. DOI:10.1021/ja910716s 

Barlow, S.;* Risko, C.; Odom, S.A.; Zheng, S.; Beverina, L; Bredas, J.-L., Marder, S.R. “Tuning Delocalization in the Radical Cations of 1,4-Bis[4-(diarylamino)styryl]benzenes, 2,5-Bis[4-(diarylamino)styryl]thiophenes, and 2,5-Bis[4-(diarylamino)styryl]pyrroles through Substituent Effects.” J. Am. Chem. Soc.,  2012, 134, 10146-10155. DOI: 10.1021/ja3023048

Barlow, S.; Odom, S.A.; Lancaster, K.; Getmanenko, Y.A.; Mason, R.J.; Coropceanu, V.; Brédas, J.-L.; Marder, S.R. “Electronic and Optical Properties of 4H-Cyclopenta[2,1-b:3,4-b]bithiophene Derivatives and Their 4-Heteroatom-Substituted Analogues: A Joint Theoretical and Experimental Comparison.” J. Phys. Chem. B 2010114, 14397–14407.  DOI: 10.1021/jp100774r

Sanchez-Carrera, R.S.; Odom, S.A.; Kinnibrugh, T.L.; Sajoto, T.; Kim, E.-G.; Timofeeva, T.V.; Barlow, S.; Coropceanu, V.; Marder, S.R.; Brédas, J.-L. “Electronic Properties of the 2,6-Diiododithieno[3,2-b:2’,3’-d]thiophene Molecule and Crystal: A Joint Experimental and Theoretical Study.” J. Phys. Chem. B 2010, 114, 749-755.  DOI: 10.1021/jp909164w

Caruso, M.M.; Davis, D.A.; Shen, Q.; Odom, S.A.; Sottos, N.R.; White, S.R.; Moore, J.S. “Mechanically-Induced Chemical Changes in Polymeric Materials.” Chem. Rev. 2009, 109, 5755–5798. DOI:10.1021/cr9001353

Odom, S.A.; Kelley, R. F.; Ohira, S.; Ensley, T.; Huang, C.; Padilha, L.A.; Webster, S.; Coropceanu, V.; Barlow, S.; Hagan, D.; Van Stryland, E.W.; Brédas, J. L.; Anderson, H.L.; Wasielewski, M.R.; Marder, S.R. “Photophysical Properties of an Alkyne-Bridged Bis(Zinc Porphyrin)-Perylene Diimide Derivative.”  J. Phys. Chem. A 2009, 113, 10826-10832.  DOI: 10.1021/jp905214g

Odom, S.A.; Webster, S.; Padilha, L.A.; Peceli, D.; Hu, H.; Nootz, G.; Chung, S.-J.; Ohira, S.; Matichak, J.D.; Przhonska, O.V.; Kachkovski, A.D.; Barlow, S.; Brédas, J.-L.; Anderson, H.L.; Hagan, D.J.; Van Stryland, E.W.; Marder, S.R. “Synthesis and Two-Photon Spectrum of a Bis(Porphyrin)-Substituted Squaraine.” J. Am. Chem. Soc. 2009, 131, 7510-7511.  DOI: 10.1021/ja901244e

An, Z.; Odom, S.A.; Kelley, R.; Huang, C.; Barlow, S.; Zhang, X.; Padilha, L.; Fu, J.; Webster, S.; Hagan, D.; Van Stryland, E.W.; Marder, S.R. “Synthesis and Photophysical Properties of Donor- and Acceptor-Substituted 1,7-Di(arylalkynyl)perylene-3,4:9,10-bis(dicarboximide)s.” J. Phys. Chem. A 2009, 113(19), 5585-5593.DOI: 10.1021/jp900152r

Lancaster, K.; Odom, S.A.; Jones, S.; Thayumanavan, S.; Marder, S.R.; Brédas, J.-L.; Coropceanu, V.; Barlow, S. “Intramolecular Electron-Transfer Rates in Mixed-Valence Triarylamines: Measurement by Variable-Temperature ESR Spectroscopy and Comparison with Optical Data.” J. Am. Chem. Soc. 2009, 131(5), 1717-1723. DOI: 10.1021/ja808465c

Odom, S.A.; Lancaster, K.; Beverina, L.; Lefler, K.M.; Thompson, N.J.; Coropceanu, V.; Brédas, J.-L.; Marder, S.R.; Barlow, S. “Bis(di-4-alkoxyphenyl)amino Derivatives of Dithienylethene, Bithiophene, Dithienothiophene, and Dithienopyrrole: Palladium-catalysed Synthesis and Highly Delocalised Racial Cations.” Chem. Eur. J.  2007, 13, 9637-9646.  DOI: 10.1002/chem.200700668

Payne, M.M.; Odom, S.A.; Parkin, S.R.; Anthony, J.E. “Stable, Crystalline Acenedithiophenes with up to Seven Linearly Fused Rings.” Org. Lett. 2004, 6(19), 3325-3328.  DOI: 10.1021/ol048686d

Odom, S.A.;Parkin, S.R.; Anthony, J.E.Tetracene Derivatives as Potential Red Emitters for Organic LEDs.” Org. Lett. 2003, 5(23), 4245-4248. DOI: 10.1021/ol035415e

X
Enter your Chemistry username.
Enter the password that accompanies your username.
Secure Login

This login is SSL protected

Loading