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Alzheimer’s disease, the major dementing disor-
der of the elderly that affects over 4 million Ameri-
cans, is related to amyloid B-peptide, the principal
component of senile plaques in Alzheimer’s disease
brain. Oxidative stress, manifested by protein oxi-
dation and lipid peroxidation, among other alter-
ations, is a characteristic of Alzheimer’s disease
brain. Our laboratory united these two observa-
tions in a model to account for neurodegeneration
in Alzheimer’s disease brain, the amyloid B-peptide-
associated oxidative stress model for neurotoxicity
in Alzheimer’s disease. Under this model, the aggre-
gated peptide, perhaps in concert with bound redox
metal ions, initiates free radical processes resulting
in protein oxidation, lipid peroxidation, reactive
oxygen species formation, cellular dysfunction
leading to calcium ion accumulation, and subse-
quent neuronal death. Free radical antioxidants ab-
rogate these findings. This review outlines the
substantial evidence from multiidisciplinary ap-
proaches for amyloid B-peptide-associated free rad-
ical oxidative stress and neurotoxicity and protec-
tion against these oxidative processes and cell
death by free radical scavengers. In addition, we
review the strong evidence supporting the notion
that the single methionine residue of amyloid
B-peptide is vital to the oxidative stress and neuro-
toxicological properties of this peptide. Further, we
discuss studies that support the hypothesis that ag-
gregated soluble amyloid B-peptide and not fibrils
per se are necessary for oxidative stress and neuro-
toxicity associated with amyloid B-peptide. © 2000
Academic Press
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1. INTRODUCTION

Amyloid B-peptide (AB), in the form of insoluble
fibril deposits, is the major component of the se-
nile plagques (SP) that characterize Alzheimer’s
disease (AD) brain. This observation, in the mid-
1980s (Glenner and Wong, 1984; Masters et al.,
1985), led to the hypothesis that deposition of
amyloid is an early step in the pathogenesis of AD
(Masters et al., 1985; Hardy and Higgins, 1992;
Masters and Beyreuther, 1993; Selkoe, 1989) and
is in some way associated with the neurodegen-
eration in AD. This hypothesis gained further cre-
dence upon the observations that SP are sur-
rounded by degenerated neurons (Katzman and
Saitoh, 1991) and that AB peptides are toxic to
neurons in culture (Yankner et al., 1989;
Frautschy et al., 1991; Kowall et al., 1991; Pike et
al., 1991; Howlett et al., 1995; Harris et al., 1995a;
Aksenov et al., 1995, 1996, 1998a; Yatin et al.,
1999a,b,c,d; Varadarajan et al., 1999). Genetic
studies of early-onset familial AD (FAD) offer the
strongest evidence for a central role of AB in the
pathogenesis of the disease (Selkoe, 1996). Several
FAD mutations have been found in the amyloid
precursor protein (APP) and presenilin genes;
these mutations invariably lead to increased AB
deposition (Selkoe, 1996; Scheuner et al., 1996).
APP is expressed on chromosome 21 as is Down’s
trisomy, and persons with Down’s syndrome have
increased AP deposits (Teller et al.,, 1996) and
develop AD eventually. APP-overexpressing mice
exhibit some characteristics of AD pathology
(Games et al., 1995; Hsiao et al., 1996; Hsiao,
1998; Masliah et al., 1996; Irizarry et al., 1997;
Sturchler-Pierrat et al., 1997; Calhoun et al.,
1998; Frautschy et al., 1998a; Pappolla et al.,
1998; Smith et al., 1998).

The AD brain is subjected to increased oxidative
stress resulting from free radical damage (Markes-
bery, 1997; Markesbery and Carney, 1999; Butter-
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field, 1996, 1997), and the resulting cellular dysfunc-
tions are widely believed to be responsible for
neuronal degeneration in this disorder. Consider-
able evidence supports this view. For example, in-
creased oxidation of proteins (Hensley et al., 1995a;
Smith et al., 1991; Lyras et al.,, 1997) and DNA
(Markesbery and Carney, 1999; Mecocci et al., 1993,
1994; Lyras et al., 1997; Gabbita et al., 1998; Hirai et
al., 1998) is reported in AD. Decreased levels of
polyunsaturated fatty acids (Pettigrew et al., 1988;
Nitsch et al., 1992; Svennerholm and Gottfries,
1994; Prasad et al., 1998) coupled with increased
lipid peroxidation (Subbarao et al., 1990; Hajimo-
hammadreza and Brammer, 1990; Marcus et al.,
1998; Mclintosh et al., 1997; Lovell et al., 1995),
increased levels of 4-hydroxynonenal (HNE), a toxic
product of lipid peroxidation (Lovell et al., 1997;
Markesbery and Lovell, 1998), and increased levels
of isoprostanes, which are products of free radical-
induced oxidation of arachidonic acid (Montine et
al., 1998; Roberts et al., 1998), are found in AD
brain. Widespread peroxynitrite-induced nitration
of tyrosine residues is reported (Smith et al., 1997).
There is also evidence for the presence of advanced
glycation end-products (AGE), which are formed by
oxidation of moieties resulting from the reaction of
proteins with carbohydrates, in AD (Smith et al.,
1994, 1995; Vitek et al., 1994). Several reviews are
available that describe the mounting evidence that
establish the elevated oxidative stress levels in AD
(Butterfield, 1996, 1997, Butterfield, 1999a, 1999b;
Markesbery, 1997; Markesbery and Carney, 1999;
Behl, 1999; Retz et al., 1998).

The sites in the AD brain where neurodegenera-
tion occurs and where oxidative stress exists are
associated with increased AB deposits (Hensley et
al., 1995a). Based on these observations and our
extensive studies of oxidative stress and neurotoxic-
ity associated with AB, we proposed the AB-associ-
ated oxidative stress model of neurodegeneration in
AD (Butterfield et al., 1994; Butterfield, 1997). Ac-
cording to this model, the AB peptide, along with
other moieties, is directly responsible for free-radi-
cal damage to neuronal membrane systems, leading
to subsequent neuronal loss in the AD brain. The
mechanism by which the amyloid peptides exert tox-
icity is as yet unknown, but we have suggested, and
others have confirmed, that free radicals are associ-
ated with ApB toxicity. Evidence for AB-associated
free radical formation and AB-associated free radical
damage to biological membranes is enumerated be-
low. The importance of the single methionine resi-
due of AB and the relevance of fibril formation to AB
toxicity are also discussed in this review.
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FIG. 1. Model for AB-associated free radical oxidative stress
in Alzheimer’s disease. AB-initiated free radicals (ROS) react
rapidly with several moieties in the plasma membrane and cause
membrane protein oxidation and lipid peroxidation. Toxic prod-
ucts of lipid peroxidation, such as HNE and acrolein, having
longer half-lives than free radicals, migrate to different parts of
the neuron causing multiple deleterious alterations of cellular
function, especially sharp increases in intracellular Ca?*, ulti-
mately leading to neuronal death. This free radical “shrapnel”
process could account for multiple alterations of the structure and
function enzymatic and transport proteins and lipids in AD, and
lipid peroxidation, resulting from a chain reaction process and
resulting in reactive aldehydes, provides an “amplification” of an
initial free radical event. See text.

2. AB-ASSOCIATED FREE RADICAL MODEL
FOR OXIDATIVE STRESS IN AD

One of the confounding features of AD is the wide
range of modifications in cellular functions that
have been observed. Alterations in inflammatory re-
sponse, membrane enzymes, transport proteins,
structural and cytoskeletal proteins, lipids, mito-
chondrial function, Ca®* homeostasis, etc., have
been documented in AD (reviewed in Selkoe, 1991,
1994; Corain et al., 1993; Katzman and Saitoh, 1991;
Markesbery, 1997; Markesbery and Carney, 1999;
Butterfield, 1997, 1999a, 1999b, 1999c). One way to
account for the myriad of changes detected in AD is
to invoke a free radical process, in which any protein
or lipid moiety attacked by a free radical would have
altered structure and function. Considering the cen-
trality of AB to AD and the oxidative stress that the
AD brain is under, our laboratory developed a model
for neuronal death involving AB-associated free rad-
ical oxidative stress (Fig. 1) (Butterfield et al., 1994;
Butterfield, 1997).

According to the model, the APP-derived amyloid
B-peptide, probably as a small, soluble aggregate,
inserts into the neuronal and glial membrane bi-
layer and generates oxygen-dependent (and possibly
redox metal ion-dependent) free radicals that then
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cause lipid peroxidation and protein oxidation.
Membrane damage results, either directly due to
ApB-associated free radicals, possibly involving pep-
tide-bound redox metal ions, or indirectly by the
action of lipid free radicals or the lipid peroxidation
products HNE and acrolein (2-propenal). Loss of
membrane integrity leads to cellular dysfunction,
such as inhibition of ion-motive ATPases, loss of
Ca?* homeostasis, inhibition of glial cell Na™-depen-
dent glutamate uptake system with consequences on
neuronal excitatory NMDA receptors, loss of protein
transporter function, disruption of signaling path-
ways, and activation of nuclear transcription factors
and apoptotic pathways. Neuronal death is the ulti-
mate consequence of these cellular dysfunctions.

One advantage of this model is that it unifies the
seemingly disconnected pathological characteristics
of AD into a coherent theoretical framework. The
“shower” of amyloid-initiated, highly reactive free
radicals can account for the wide range of observed
neuronal functional impairment. The secondary
toxic products of such free radical attack on mem-
brane systems, such as HNE or acrolein, though less
reactive than radicals, with half-lives ranging from
minutes to hours and which can therefore diffuse
from their site of origin to cause damage at more
distant sites, are strongly nucleophilic, reacting eas-
ily with cysteine, histidine, or lysine residues on
proteins or amino groups on lipids. Further, this
model provides an “amplification” process to the
original free radical initiation by repeated chain re-
action processes in lipids, producing HNE, acrolein,
and numerous other reactive aldehyes. This model is
consistent with the age dependence of AD. Younger
people with greater antioxidant capacity (Smith et
al., 1991, 1992; Carney et al., 1991; Starke-Reed and
Oliver, 1989) are capable of withstanding the oxida-
tive stress caused by the amyloid-associated free
radicals. Since antioxidant mechanisms are compro-
mised with increasing age and other environmental
insults (Butterfield et al., 1997b; Butterfield and
Stadtman, 1997), the damage caused by free radi-
cals accumulates and could account for, in part, the
various membrane and cellular alterations reported
in AD. Genetic or environmental factors that con-
tribute to decreased antioxidant status or to altered
binding to chaperon proteins, such as apoE4 (Soto et
al., 1996; Corder et al., 1993), might also predispose
AD patients to these processes.

This model of AB free radical-based neurotoxicity
in AD, supported by numerous lines of evidence, also
lends itself to a molecular rationale for possible ther-
apeutic strategies in AD that involves the adminis-
tration of appropriate brain accessible free radical
scavengers. This prediction has been borne out by
numerous studies in several laboratories. For exam-

ple, vitamin E (Subramaniam et al., 1998; Yatin et
al., 1999a, 2000a; Koppal et al., 1998; Behl and
Holsboer, 1998; Harris et al., 1996; Butterfield et al.,
1999c), propyl gallate (Harris et al., 1995a), EUK-8
(Bruce et al., 1996), and other antioxidants (Pap-
polla et al., 1998; Daniels et al., 1998; Gridley et al.,
1997) significantly modulate oxidative stress prop-
erties and neurotoxicity to brain cells (Markesbery,
1997; Markesbery and Carney, 1999; Butterfield,
1997, 1999a, 1999b, 1999¢). Further, high-dose vita-
min E treatment is reported to slow the progress of
AD (Sano et al., 1997; Grundman, 2000). This model
has been rigorously tested in synaptosomal mem-
branes, neuronal and astrocytic cell cultures, control
and AD brain, and in in vivo studies. These studies
and others that support this model are outlined be-
low.

3. ROLE OF AMYLOID FIBRILS IN A TOXICITY

AB is a normal product of APP processing (Estus
et al., 1992; Golde et al., 1992; Haass et al., 1992)
and is a normal soluble component of the plasma
and the cerebrospinal fluid (Seubert et al., 1992;
Busciglio et al., 1993). The observation of amyloid
deposits in the SPs in essentially all cases of AD led
to the hypothesis that conversion of soluble A into
insoluble fibrils is critical for the onset of the dis-
ease. This hypothesis is supported by the fact that
fresh A is nontoxic to cultured neurons, while aged
AB (incubated to form amyloid fibrils) becomes toxic
(Yankner et al., 1989; Frautschy et al., 1991; Kowall
et al., 1991; Pike et al., 1991; Howlett et al., 1995).
Numerous efforts have been made to understand
and inhibit fibril formation (Walsh et al., 1999;
Tjernberg et al., 1999; Findeis et al., 1999; Ray et al.,
1998; Hughes et al., 1998), and prevention of fibril
formation has led to the abrogation of toxicity in
some cases (Lorenzo and Yankner, 1994).

However, the hypothesis of an absolute require-
ment of fibril formation for toxicity has been chal-
lenged (Davis and Chisholm, 1997; Hardy, 1997).
Deposition of amyloid does not correlate with de-
mentia (Terry et al., 1991; Arriagada et al., 1992;
Roses, 1994; Samuel et al., 1994; Braak and Braak,
1996). Furthermore, amyloid deposits have been
found in the brains of nondemented individuals
(Davis et al., 1999), and transgenic mice overex-
pressing AB develop amyloid deposits but do not
show neuronal loss (Geula et al., 1998). Recently,
soluble oligomers of AB, termed protofibrils, that are
B-sheet intermediates in the development of mature
fibrils, have been shown to be toxic to cultured neu-
rons. Additionally, studies have shown that AB in-
teracts with proteins such as glutamine synthetase
(GS), apolipoprotein J (apoJ, clusterin), a-1-antichy-
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motrypsin, or thrombin, to yield increased Ap-in-
duced hippocampal neurotoxicity in the absence of
fibrils (Aksenov et al., 1995, 1996; Oda et al., 1995;
Smith-Swintosky et al., 1995; Lambert et al., 1998).
Other proteins can inhibit fibril formation, but not
affect the toxicity of AB (Aksenova et al., 1996; Yatin
et al., 1999c). In contrast, incubation of AB(1-42)
with vitamin E or replacement of the methionine
residue of AB(1-42) with norleucine (see below) re-
sults in systems that exhibit no neurotoxicity; nev-
ertheless, these systems form fibrils essentially in-
distinguishable from native AB(1-42) (Varadarajan
et al., 2000a; Yatin et al., 2000a). These results dis-
cussed above, though not inconsistent with the neu-
rotoxic properties of fibrillar AB, are inconsistent
with the hypothesis of an absolute requirement for
fibril formation before AR toxicity can be displayed.

4. EVIDENCE OF Ap ASSOCIATION
WITH FREE RADICALS

The model for AB-associated oxidative stress and
neurodegeneration in AD brain (Fig. 1) is based on
the generation of free radicals by AB, perhaps in
concert with redox metal ions. The hypothesis that
Ap could be a source of free radical damage in in
vitro systems and, by extension, in AD brain was
systematically examined. The electron paramag-
netic resonance (EPR) technique of spin trapping,
among other methods, was used to detect transient
ApB-associated free radicals.

4.1. Spin Trapping

The most direct way of detecting transient, reac-
tive free radicals is by the EPR technique of spin
trapping. In EPR spin trapping studies, a nonpara-
magnetic molecule acting as a trap reacts with a
transient free radical (R=) to form a relatively stable
paramagnetic adduct (spin adduct) that can be de-
tected by EPR.

H O
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This magnetic resonance technique is extremely
sensitive, with detection limits close to that of fluo-
rescence, and has the advantage over optical meth-
ods in biological systems in that opague samples can
be used (Janzen, 1980; Butterfield, 1982).

In most spin-trapping experiments, N-tert-butyl-
a-phenylnitrone (PBN) is used as the spin trap. The
reaction of an oxygen- or a carbon-centered free rad-
ical with PBN normally produces a free radical spin
adduct that exhibits a 6-line EPR spectrum (Fig.
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FIG. 2. EPR spectra obtained in various spin trapping ex-
periments with ultrapure PBN (50 mM) upon incubation at
37°C for varying times. (A) Usual 6-line EPR spectrum of a free
radical spin adduct of PBN with a C- or an O-centered free
radical. Here is shown the “OH adduct of PBN. (B) AB(1-42)
(165 wM) with PBN (50 mM) after 60 h at 37°C in chelexed PBS
containing deferroxamine (2 mM). (C) AB(1-40) (250 wM) with
PBN (50 mM) after 48 h at 37°C in chelexed PBS containing
deferroxamine (2 mM). (D) AB(25-35) (1 mM) with PBN (50
mM) after 24 h at 37°C in chelexed PBS containing deferrox-
amine (2 mM). (E) Control PBN solution (50 mM) plus defer-
roxamine (2 mM), lacking peptide, after 60 h at 37°C. Note the
absence of a spectrum. (F) AB(25-35) (1 mM) in deuterated
buffer (PBS prepared in D,0O) with PBN (50 mM) and defer-
roxamine (2 mM) after a 24-h incubation at 37°C. Note the
9-line spectrum. (G) Control PBN solution (50 mM) lacking
peptide, in deuterated buffer containing deferroxamine (2 mM)
after a 24-h incubation at 37°C. (H) Control PBN solution (50
mM) lacking peptide, in deuterated buffer containing deferrox-
amine (2 mM) after a 4-day incubation at 37°C. Note that the
spectrum has 6 lines, not 9. (I) PBN solution (50 mM) in
chelexed PBS containing 1 uM FeCl; incubated in the absence
of peptide at 37°C for 24 h. Note the absence of a spectrum. (J)
AB(1-42)Met35Nle (165 uM) with PBN (50 mM) after 60 h at
37°C in chelexed PBS containing deferroxamine (2 mM). Note
the absence of a spectrum in this peptide in which methionine
has been replaced by norleucine. (K) AB(1-40)Met35NIle (250
wM) with PBN (50 mM) after 48 h at 37°C in chelexed PBS
containing deferroxamine (2 mM). A result similar to that
obtained with Ap(1-42)Met35NIle was found. (L) ApB(1-
42)His6,13,14Tyr (165 uM) with PBN (50 mM) after 60 h at
37°C in chelexed PBS containing deferroxamine (2 mM). Note
the spectrum similar to that of native AB(1-42) (B). Instrumen-
tal parameters were as follows: microwave power 20 mW,;
modulation amplitude = 0.3 — 1 G; gain = 1 X 10%; conversion
time = 10.28 ms. Only the neurotoxic peptides AB(1-42), AB(1-
40), AB(25-35), and AB(1-42)His6,13,14Tyr yield a 4-line spec-
trum. See text.
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2A), resulting from the hyperfine coupling of the
magnetic moment of the unpaired electron of the
nitroxide spin adduct with the magnetic moments of
the nitrogen nucleus (I = 1) and the «-hydrogen
atom (I = 1/2). The magnitude of the splitting due
to the H atom depends on the size and nature of the
adduct (Beuttner, 1987; Butterfield, 1982; Janzen,
1980), and therefore, insight into the microenviron-
ment near the paramagnetic center of the free rad-
ical can be obtained in favorable cases. If, as in our
studies, the highly purified spin trap PBN is itself
unable to generate an EPR signal under experimen-
tal conditions, then an EPR spectrum in the pres-
ence of a radical generator is prima fascia evidence
for the presence of a free radical.

In our spin-trapping studies, buffers are prepared
over Chelex 100, beads that bind redox metal ions,
and essentially all our spin-trapping studies employ
deferroxamine, a redox metal ion chelator. It has
been reported that Fe3* (at concentrations much
higher than those found in Chelex- or deferroxam-
ine-treated buffers) can catalyze the decomposition
of PBN with subsequent formation of N-tert-butyl
hydronitroxide (Chamulitrat et al., 1995). This could
result in a 3-line EPR spectrum. Additionally, N-
tert-butylhydroxyl amine, a potential trace contam-
inant in PBN preparations, can yield a 4-line EPR
spectrum upon oxidation by higher valence state
redox metal ions like Fe*" (Dikalov et al., 1999).
PBN synthesized in our laboratory is rigorously pu-
rified by repeated recrystallizations and sublima-
tions to ensure its purity, and PBN purity was ver-
ified by NMR, EPR, and HPLC analyses. Further,
addition of 1 uM Fe®*" to our PBN preparations
containing deferroxamine did not lead to an EPR
spectrum within the time frame required to gener-
ate spectra with AB peptides (Varadarajan et al.,
1999); i.e., Fe**, at a concentration that approxi-
mates trace amounts of redox metal ions that may
be bound to AB, did not cause a decomposition of
PBN with subsequent formation of EPR spectra in
the time frame of the experiments. Additionally,
higher concentrations of Fe3* (10 wM) in the pres-
ence of 2 mM deferroxamine did not yield any spec-
trum with PBN. In the absence of deferroxamine, 10
wM Fe*" can cause decomposition of PBN, but all
our studies were conducted in the presence of this
chelator. This result shows that that in our experi-
ments, deferroxamine is effective in preventing for-
mation of EPR spectra due to Fe**-induced break-
down of PBN and subsequent oxidation of
breakdown products or impurities.

4.2. Spin Trapping Studies of AB Peptides

Incubation of neurotoxic AB peptides, viz., AB(1-
42), AB(1-40), and AB(25-35), with PBN in metal

ion-chelated, oxygenated buffers leads to the forma-
tion of EPR-detectable nitroxides (Figs. 2B, 2C, and
2D, respectively) (Butterfield, 1997; Harris et al.,
1995b; Hensley et al., 1995b,c; Yatin et al., 1999b;
Varadarajan et al., 1999, 2000b). These EPR spectra
are not observed in the absence of the peptide (Fig.
2E), suggesting that the peptides are the likely
source of the free radicals generated. Our spin-trap-
ping results were recently confirmed in other labo-
ratories that reported a 4-line EPR spectrum with
AB(1-42) and PBN (Huang et al., 1999b) and a weak
4-line EPR spectrum with AB(1-40) or AB(25-35)
with PBN (Allsop, personal communication, 2000).
One report could not confirm an EPR spectrum of
the spin adduct of AB(25-35) and PBN (Dikalov et
al., 1999; see below), and this latter report suggests
that redox metal ions are solely responsible for the
EPR signal generation with PBN. Our experiments
suggest that AB, perhaps in concert with redox
metal ions, is responsible for the observed neurotox-
icity and free radical generation. One possible expla-
nation as to why Dikalov and co-workers did not
observe an EPR spectrum with AB(25-35) is perhaps
the length of incubation of the peptide with PBN
(only 6 h). When highly purified PBN is used as the
spin trap, our experience is that the generation of
EPR spectra requires at least a 12-h incubation for
AB(25-35), and longer for AB(1-40) and AB(1-42),
with PBN. Tomiyama et al. (1996), in their study of
the prevention of AB(1-40) neurotoxicity and fibril
formation by rifampicin, reported a 3-line EPR spec-
trum of AB(1-40) with PBN. We too, in our earlier
studies, had observed a 3-line EPR spectrum with
AB peptides (Hensley et al., 1994b), but have been
unable to observe this spectrum in subsequent ex-
periments utilizing ultrapure PBN (Varadarajan et
al., 1999).

The spectra observed with the AB peptides were
not the expected 6-line spectra (Fig. 2A) seen with
normal O- or C-centered PBN free radical adducts
(Butterfield, 1982; Janzen, 1980). Instead, a 4-line
spectrum was observed in most cases (Fig. 2), sug-
gesting an unusual behavior for the AB-derived rad-
icals. The highly reactive AB-associated free radicals
cause the decomposition of the PBN spin trap, lead-
ing to the formation of a product that exhibits a
4-line EPR spectrum.

H O - 0
@_ (li—Ili— C(CHy)s decomposition H—lli—C(CH3)3
llz(AB) t-butylhydronitroxide
AP spin adduct (4-line spectrum)

This peptide radical-initiated decomposition of the
spin trap was confirmed by spin-trapping experi-
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ments with AB(25-35) using [**C]PBN with the la-
beled carbon in the «-position. Hydroxyl radicals,
formed by Fe*"/H,O, and trapped by [**C]PBN,
yielded the expected 12-line spectrum showing hy-
perfine coupling of the «-carbon (Hensley et al.,
1995¢). AB(25-35), a truncated form of AB(1-42),
mimics the neurotoxic and EPR properties of the
full-length peptide, albeit in a much shorter time
(Hensley et al., 1994b). In contrast to hydroxyl free
radical trapped by [**C]PBN, the 4-line EPR spec-
trum observed using [**C]PBN and Ap(25-35) was
no different from that obtained when unlabeled PBN
was used. This result suggests that the peptide-
associated radical decomposes the spin trap. Had
the spin trap remained intact, further splitting of
the 4-line spectra due to the labeled carbon would
have been observed.

The 4-line producing species was identified to be
tert-butylhydronitroxide by comparing the observed
EPR spectrum with that of the authentic compound.
Further confirmation that the 4-line EPR spectrum
producing species is a hydronitroxide was obtained
by performing the experiments in D,O, with the
deuterium—hydrogen exchange resulting in the pre-
dicted 9-line EPR spectrum (Fig. 2F) (Hensley et al.,
1995c; Varadarajan et al., 1999). No signal was ob-
served in the control PBN solution in D,O (Fig. 2G)
within the time frame of the experiment; however, a
weak 6-line spectrum was generated after incuba-
tion for 4 days at 37°C (Fig. 2H). This result also
confirms that the 4-line EPR signal from the pep-
tide/PBN reaction in H,O is the tert-butylhydroni-
troxide spectrum. This signal is likely associated
with the peptide, perhaps in concert with redox
metal ions, and likely not with a potential contami-
nant in the spin trap (Dikalov et al., 1999); had a
trace impurity in the PBN led to the tert-butyl hy-
dronitroxide formation independent of the peptide,
then prolonged incubation of the PBN solution in
D,O would have resulted in a 9-line EPR spectrum
and not the observed 6-line spectrum. It is conceiv-
able that some impurity (other than redox metal
ions) could be associated with the peptide, and this
impurity is responsible for the EPR spectra. Several
observations argue against this possibility. Other
studies showed that the batch-to-batch variation in
properties of synthetic AB peptides is not due to
impurities in the peptide (Simmons et al., 1994). As
shown below, when methionine is replaced by nor-
leucine in AB(1-42), AB(1-40), or AB(25-35), a simple
replacement of the S atom in methionine by a CH,
group, no oxidative stress, no neurotoxicity, and no
EPR spectra in the presence of PBN are observed.
One might imagine that had an impurity been
present in these methionine-substituted peptides,
which are prepared by the same peptide supplier as

their toxic counterparts, one would have seen an
EPR spectrum, yet one does not.

The ApB-associated EPR spectrum is abolished if
solutions of the peptide and spin trap are sparged
with nitrogen in order to eliminate the presence of
oxygen. Subsequent reoxygenation of these solu-
tions results in the formation of the 4-line spectrum.
Superoxide dismutase (SOD) did not affect the AB-
PBN EPR spectrum, whereas the EPR signal was
completely abolished in the presence of catalase
(Harris et al., 1995b). A peroxyl free radical was
suggested based on the use of a sensitive colorimet-
ric assay specific for peroxyl species (Butterfield et
al., 1996b). Other laboratories have subsequently
confirmed that catalase will mitigate AB-induced
free radical damage to cells (Puttfarcken et al., 1996;
Manelli and Puttfarcken, 1995).

The mechanism of AB-associated free radical for-
mation is not yet clear. The full-length AB peptides
possess a Cu?*-binding domain (Atwood et al.,
1998), and AB(1-42) can reduce the bound Cu?" to
Cu® (Huang et al., 1999b; Varadarajan et al.,
2000b). The resultant AB(1-42)-associated Cu™ was
reported to lead to H,O, production, i.e., oxidative
stress (Huang et al., 1999a). This transfer of a single
electron from the peptide to the metal would result
in the formation of a peptidyl free radical, which is
one possible explanation for the formation of AB
radicals. However, it was reported that the trun-
cated peptide, AB(25-35), was incapable of reducing
Cu?", suggesting that a different mechanism is re-
sponsible for its toxicity. Mechanistic experiments
have established that the methionine at residue 35
is critical to the free radical and neurotoxic proper-
ties of the AB peptides (see below).

Trace levels of redox metal ion contaminants in
the synthetic AB peptides were suggested to be re-
sponsible for the oxidation of hydroxylamine impu-
rities in PBN to the corresponding nitroxides to ac-
count for the signals detected (Fig. 2) (Dikalov et al.,
1999). While this is certainly possible (and may ex-
plain the formation of the nonreproducible 3-line
spectra observed earlier with AB peptides and PBN),
the spin-trapping results presented in this paper
and elsewhere (Varadarajan et al., 1999) strongly
suggest that this is not the case in our studies, since
the iron chelator deferroxamine was used in all our
experiments, and addition of 1-10 uM Fe*" to PBN
solutions containing deferroxamine did not produce
any EPR signals (Fig. 2I). This result certainly does
not rule out the possibility that redox metal ion
contamination in the peptide sample may be respon-
sible for the breakdown of the spin trap. However, as
noted above, modified AB peptides, lacking the me-
thionine residue (see Figs. 2J and 2K) (Varadarajan
et al., 1999; Yatin et al., 1999b), presumably synthe-
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sized in the same way as the parent peptides that
generated EPR signals and therefore containing the
same potential trace metal contaminants as native
ApB peptides, in the presence of PBN and putative
hydroxylamine impurities, do not produce any EPR
signals within the time frame of the experiment. If
the EPR signals observed with unmodified AB pep-
tides were due to the reaction of redox metal ions
with PBN and/or other impurities, then the modified
AB peptides lacking methionine should also have
yielded the same 4-line spectrum, but they do not.

Our spin-trapping studies with AB(1-42) are usu-
ally conducted for 2—-3 days, a time frame in which a
4-line EPR spectrum of AB(1-42) appears, but me-
thionine-substituted peptides do not yield EPR spec-
tra with PBN. We have not pursued studies of pep-
tides for longer periods of incubation. In all our
experiments, prolonged incubation (4 days or longer)
of control PBN solutions (lacking peptide) at 37°C
(well beyond the experimental time used for trap-
ping AB-associated free radicals) invariably eventu-
ally resulted in a 6-line spectrum (similar to Fig.
2H), and not a 4-line spectrum, suggesting that the
mechanism of formation of this spectrum is different
from the one that is operative in the presence of AB
peptides. As noted above, this 6-line spectrum was
observed even in deuterated water, where no deute-
rium effect was observed, suggesting that this 6-line
spectrum, detected long after AB/PBN signals ap-
peared, is possibly due to a breakdown product of
PBN, resulting in a C- or O-centered radical being
trapped by PBN.

Different batches of AB peptides from different
sources have been reported to have different toxicity
(May et al., 1992; Simmons et al., 1994) and produce
EPR detectable signal at different times (Hensley et
al., 1995b). The reason for this variation in batch-
to-batch properties of AB is not clear, but may in-
volve conformational or aggregation differences
(May et al., 1992; Simmons et al., 1994). Though
trace impurities were shown not to be responsible
for this variation (Simmons et al., 1994), it is possi-
ble that batch-to-batch variation of redox metal ion
impurities in synthetic AB peptides may be respon-
sible for the variation in toxicity. As noted, other
laboratories have confirmed the 4-line EPR signal of
ApBand PBN (Allsop, personal communication, 2000;
Huang et al., 1999b).

4.3. Other Evidence for AB Free Radical
Generation in Solution

Numerous other experiments have provided direct
and indirect evidence for the involvement of free
radicals in AB-associated oxidative stress. For exam-
ple, salicylate was used to trap AB-derived free rad-
icals in the form of dihydroxybenzoic acids (Hensley

et al., 1994b). Creatine kinase (CK) and GS are
oxidatively sensitive enzymes (Smith et al., 1992;
Oliver et al., 1987) whose activity is decreased in the
AD brain (Hensley et al., 1995b). Both these en-
zymes were deactivated by incubation with Ag (Har-
risetal., 1995a; Hensley et al., 1994b; Aksenov et al.,
1997; Yatin et al., 1999a). A potential role for redox
metal ions associated with AB cannot be ruled out in
these studies. A number of free radical antioxidants
protect against AB-induced reactive oxygen species
(ROS) formation, protein oxidation, and neurotoxic-
ity (Behl et al., 1992; Behl et al., 1994; Bruce et al.,
1996; Daniels et al., 1998; Goodman et al., 1994,
Gridley et al., 1997; Harris et al., 1995a, 1996; Kop-
pal et al., 1998; Mark et al., 1997a,b; Yatin et al.,
1999a,d). AB induces hydrogen peroxide formation
in clonal cell lines, and the H,O,-degrading enzyme
catalase protects cells from A toxicity and free rad-
ical production (Behl et al., 1994). Further, in solu-
tions containing both AB and nitroxide free radicals,
the signal due to the nitroxide species was dimin-
ished, indicating that a peptide-associated free rad-
ical reacts with the free radical on the nitroxide
(Butterfield et al., 1994, 1996b; Koppal et al., 1998;
Bruce-Keller et al., 1998a). These observations pro-
vide evidence for the involvement of ROS and oxi-
dative damage in the neurotoxic properties of AB.
Although these findings may indicate an indirect
stimulation of ROS formation by AB, the observa-
tions are consistent with the notion of AB being a
free radical prooxidant.

5. AB-ASSOCIATED OXIDATIVE STRESS

Oxidative stress reflects a situation wherein reac-
tive oxygen species, such as free radicals and their
products, are in excess of the antioxidant defense
systems. The link between the amyloid deposits and
oxidative stress in AD brain is not readily apparent
due to the fact that studies of postmortem tissue
cannot reveal whether these deposits are the by-
products of neurodegeneration or precede the degen-
erative process. However, there is increasing evi-
dence that shows that AB itself is associated with
oxidative stress. Several markers of excess oxidative
stress, such as an increase in ROS, accumulation of
oxidized products such as protein carbonyls from
protein oxidation and aldehydes and isoprostanes
from lipid peroxidation, serve to establish the direct
role of AB in the oxidative damage associated with
AD. This section of the review describes the oxida-
tive stress caused by AB in biological systems.

5.1. Oxidation of Membrane Proteins

One of the predictions of the model for AB-associ-
ated free radical oxidative stress-induced neuronal
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death in AD brain (Fig. 1) is that AB will cause
membrane protein oxidation. The resulting protein
damage may be manifested in the form of physical,
chemical, or functional changes.

Changes in the physical or functional state of pro-
teins can be detected by the sensitive EPR technique
of spin labeling utilizing protein-specific spin labels,
e.g., 2,2,6,6-tetramethyl-4-maleimidopiperidin-1-
oxyl (MAL-6) (Butterfield, 1982). The motion of the
spin label, covalently bound to sulfhydryl sites on
the protein, is either relatively free or highly re-
stricted, depending on the site of protein attach-
ment. This is reflected in the EPR spectrum as
weakly immobilized (W) or strongly immobilized (S)
components. The ratio of the EPR signal amplitude
of the low-field resonance line in the two populations
of immobilized spin label, the W/S ratio, is an indi-
rect measure of protein oxidation. The WIS ratio is
highly sensitive to oxidative modifications of pro-
teins and has been shown to decrease relative to
controls in several models of oxidative stress rang-
ing from hydroxyl free radical generation, to models
of stroke, hyperoxia, ischemia, aging, sepsis, Hunt-
ington’s disease, and peroxynitrite damage (Howard
et al., 1996; Hensley et al., 1994a; Hall et al.,
1995a,b,c, 1997; Butterfield et al., 1997b; Bellary et
al., 1995; Koppal et al., 1999a; La Fontaine et al.,
2000).

Chemical changes in membrane proteins, mani-
fested in the form of increased protein carbonyls, an
index of protein oxidation (Butterfield and Stadt-
man, 1997; Stadtman, 1992), are detected using
UV-Vis spectroscopy, immunochemistry, and hist-
ofluorescence methods. Kinetic studies measure ox-
idatively induced changes in enzyme function
(Smith et al., 1991; Hensley et al., 1994b; Butterfield
et al., 1997a). Each of these methods was used to
demonstrate protein oxidation in Ap-treated brain
samples.

Synaptosomal membranes obtained from AB-rich
hippocampus and inferior parietal lobule regions of
AD brains following the University of Kentucky
rapid autopsy protocol (2—4 h postmortem interval)
showed decreased W/S ratios of MAL-6 relative to
AB-poor cerebellum and relative to all areas of sim-
ilarly obtained control brains (Hensley et al., 1995a).
Synaptosomal membranes isolated from rodent
brain and treated with AB resulted in a decreased
WI/S ratio of MAL-6, and, consistent with Ap-in-
duced protein oxidation, the antioxidant vitamin E
protected rodent synaptosomal membranes treated
with AB against the decrease in the W/S ratio of
MAL-6 (Subramaniam et al., 1998; Butterfield,
1997; Butterfield et al., 1999c).

Cortical or hippocampal synaptosomes isolated
from AD brain or from rodent brain or rodent cul-
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FIG. 3. Protein oxidation induced by AB peptides as assessed
by measurement of protein carbonyls. The figure represents re-
sults from several studies using immunochemical methods. Re-
sults are presented as an average of two to three different trials.
*P < 0.006. Error bars represent SD values. The neurotoxic
AB(1-40), AB(1-42), and AB(25-35) all significantly increased pro-
tein carbonyl levels over control values. See text.

tured hippocampal neurons incubated with ApB(1-
42), AB(1-40), or AB(25-35) have increased protein
oxidation (Fig. 3) (Aksenov et al., 1998a; Aksenova et
al., 1999; Butterfield, 1997; Hensley et al., 1995a;
Smith et al., 1991, 1996; Subramaniam et al., 1998;
Harris et al., 1995a; Yatin et al., 1999a,b,d,e), and
this oxidation is significantly reduced by the anti-
oxidants propylgallate or vitamin E (Butterfield,
1997; Butterfield et al., 1999c; Subramaniam et al.,
1998; Harris et al.,, 1995a, 1996; Yatin et al.,,
1999a,b,d, 2000a). Nontoxic reverse peptides did not
cause protein oxidation. Maximum protein oxidation
occurred at the time when, in separate spin-trap-
ping experiments, AB gave the most intense EPR
spectrum (Harris et al., 1995a; Yatin et al., 1999e).
Other studies have confirmed protein oxidation as-
sessed by protein carbonyl formation following AB
treatment (Frautschy et al., 1998b).

Free radical oxidation of proteins may damage
enzymes critical to neuronal function (Stadtman,
1992). GS and CK are two enzymes that are partic-
ularly sensitive to oxidative modification. The func-
tion of GS is to convert glutamate to glutamine,
thereby lessening the opportunity for glutamate-ac-
tivated NMDA receptor-mediated excitotoxicity. CK
plays a central role in energy transfer in cells with
high energy requirements. A significant decline in
GS and CK activity has been observed in AD brain
(Hensley et al., 1995a; Smith et al., 1991; Burbaeva
et al., 1992). AB(1-42), AB(1-40), or AB(25-35) signif-
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icantly decreased GS activity in cytosolic factions of
mammalian brain homogenates (Aksenov et al.,
1995, 1996, 1997; Butterfield et al., 1997a; Hensley
et al., 1994b; Varadarajan et al., 2000b) and in cul-
tured hippocampal neurons and astrocytes (Harris
et al., 1995a, 1996). Using purified GS, in the ab-
sence of any cellular components, GS was oxida-
tively inhibited by AB and protein carbonyls were
incorporated in the enzyme (Aksenov et al., 1997),
suggesting that Ap-associated oxidative stress oc-
curs independent of cellular processes. As expected,
the free radical spin trap, sulfonated PBN, blocked
the effects of AB on GS (Aksenov et al., 1997). Also,
in sheep brain GS oxidized by A, the rate of uptake
of the protein-specific spin label 1-oxyl-2,2,5,5,-tet-
ramethyl-delta®-pyrroline-3-methyl)methanethio-
sulfonate (MTS) into GS sulfhydryl groups was
markedly reduced compared to control GS (Butter-
field et al., 1997a); similar results were found in
purified GS isolated from AD and control brain (But-
terfield et al., 1997a). CK activity is also inhibited by
AB (Hensley et al., 1994b; Yatin et al., 1999a), and
this loss of activity is blocked by vitamin E (Yatin et
al., 1999a), further supporting the concept of Ag-
associated free radical oxidative stress.

The decline in CK activity in AD brain may be
related to altered endogenous antioxidant levels
(Maret, 1995; Maret et al., 1999). Under oxidative
stress the level of intracellular glutathione de-
creases, and in AD brain the activity of glutathione
S-transferase is diminished (Lovell et al., 1998).
This latter enzyme also protects neurons from dam-
aging effects of the lipid peroxidation product, HNE
(Xie et al., 1998). Lymphoblasts from familial AD
that carry PS-1 or APP mutations are reported to
have decreased glutathione levels (Cecchi et al.,
1999). Decreased glutathione makes neurons more
prone to damage in ischemia reperfusion (Hall et al.,
1997) and in models of Down’s syndrome (Schuch-
mann and Heinemann, 2000). In contrast, elevated
glutathione protects synaptosomal membranes from
oxidative damage due to peroxynitrite (Koppal et al.,
1999a,b) and hydroxyl free radicals (Pocernich et al.,
2000). Under oxidative stress conditions, a shift of
glutathione redox balance causes release of Zn®*
from metallothionein (MT) (Maret, 1995). Zn®" is
reported to accelerate AB aggregation (Huang et al.,
1997); however, the apo MT (thionein) is able to
activate certain enzymes that contain Zn?* at an
inhibitory site. It is possible that thionein could also
bind Zn®** from other sources, offering protection
against AB aggregation. Thus, a decline in cellular
CK, especially near the synapse that is under exten-
sive oxidative damage in AD brain and thus in need
of energy, would lead to depletion of ATP levels,
which could affect the levels of GSH. This, in turn,

could cause the release of Zn** from MT, which
could affect AB aggregation. This conceivably could
be an area of fruitful study in AD research.
Peroxynitrite, a powerful oxidant that is formed
by the reaction of relatively less potent ROS nitric
oxide and superoxide, can oxidize membrane lipids,
proteins, and DNA and, in addition, can generate
the highly reactive hydroxyl radical. Peroxynitrite
causes the nitration of tyrosine residues yielding
nitrotyrosine, which is used as an indicator of per-
oxynitrite damage (Butterfield and Stadtman,
1997). Nitrotyrosine has been found in NFT in the
hippocampus in AD (Good et al., 1996; Smith et al.,
1997). Nitrotyrosine immunoreactivity has also
been found in non-NFT-bearing neurons and in nu-
clei of glia in AD (Smith et al., 1997). Peroxynitrite
also led to protein oxidation in cortical synaptosomal
membranes, an effect that was blocked by the pre-
treatment of the synaptosomal membranes with glu-
tathione (Koppal et al., 1999a). In vivo reduction of
glutathione levels in rodent brain by the intraperi-
toneal injection of cyclohexen-1-one led to signifi-
cantly greater peroxynitrite-induced protein oxida-
tion, whereas in vivo elevation of glutathione levels
by N-acetylcysteine provided partial protection of
synaptosomal membranes from peroxynitrite-in-
duced protein oxidation (Koppal et al., 1999b). Per-
oxynitrite is formed by the reaction of NO with su-
peroxide radical anion (Estevez et al., 1995). AB is
reported to stimulate i-NOS, from which NO is de-
rived, and mitochondrial dysfunction is reported in
AD (Beal, 1998), which could increase superoxide
levels. The AB-associated oxidative stress model for
neurodegeneration in AD brain is consistent with
these observations (Fig. 1) (Butterfield, 1997).

5.2. Oxidation of Membrane Lipids

A key prediction of the AB-associated free radical
model for neurotoxicity in AD brain (Fig. 1) is that
AB induces lipid peroxidation. Membrane bilayer
resident phospholipid unsaturated fatty acids
(PUFASs) are especially vulnerable to free radical
attack. Free radical H atom abstraction from unsat-
urated fatty acid chains and the subsequent imme-
diate reaction of the C-centered radicals with molec-
ular oxygen result in the formation of lipid peroxyl
radicals or hydroperoxides (Halliwell and Gut-
teridge, 1989). Lipid peroxidation can lead to
changes in the membrane fluidity, formation of con-
jugated dienes, HNE, acrolein, and isoprostanes, the
release of free fatty acids, and a consequent decrease
in levels of PUFA, etc. Several such markers are
commonly used to index free radical attack on phos-
pholipids (Esterbauer et al., 1991; Mathews et al.,
1997; Morrow and Roberts, 1997; Tsai et al., 1998;
Borchman et al., 1996; Akiba et al., 1997). Increased
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free fatty acid release and elevated levels of HNE,
acrolein, isoprostanes and conjugated dienes are re-
ported in AD (Prasad et al., 1998; Lovell et al., 1995;
Lovell and Markesbery, 1998; Markesbery and
Lovell, 1998; Montine et al., 1998; Marcus et al.,
1998).

EPR in conjunction with lipid-specific nitroxyl
stearate spin labels, such as 5-NS and 12-NS, were
used to examine changes in lipid bilayer order and
motion (fluidity) and to monitor free radical-induced
loss of spin label paramagnetism. Cortical synapto-
somal membranes treated with AB(25-35) and incu-
bated with the NS spin labels exhibited a large
reduction in signal intensity of the EPR spectrum,
indicating loss of paramagnetism of the spin label
(Butterfield et al., 1994, 1996a; Koppal et al., 1998;
Bruce-Keller et al., 1998a). The paramagnetic ni-
troxide moiety of the 12-NS is located deep in the
lipid bilayer, near the most common sites of unsat-
uration, i.e., near the sites of lipid radical formation.
In addition, nonpolar oxygen, which is required for
AB free radical generation (Hensley et al., 1994b)
and for the formation of lipid peroxides, is highly
soluble deep in the hydrophobic portion of biological
membranes. Small-angle X-ray studies showing the
insertion of AB into the lipid domain of membranes
(Mason et al., 1996), and electron microscopic immu-
nolocalization of AB to the neuronal plasma mem-
brane of cultured cells (Mattson et al., 1993), confirm
membranes as the target for A damage. No loss of
the intensities of 12-NS in synaptosomal mem-
branes was observed with the nontoxic reverse pep-
tide, AB(35-25) (Butterfield et al., 1994). The antiox-
idant vitamin E inhibited the ApB-induced loss of
paramagnetism in cortical synaptosomal mem-
branes (Koppal et al., 1998). Also, PC-12 cells over-
experessing Bcl-2, the gene product of which is
thought to be an antioxidant (Hockenbery et al.,
1993), did not show AB-induced lipid peroxidation in
contrast to nearly 50% loss in signal following AB
addition to PC-12 control cells (Bruce-Keller et al.,
1998a).

Oxidation of PUFAs marks them for breakdown
by phospholipases. Lipid peroxidation is increased
in AD, and, as expected, PUFA levels, especially
arachidonic acid and docosahexenoic acid which are
more vulnerable to attack by ROS, are diminished
(Prasad et al., 1998). The decreases are significant in
the case of the phospholipids that are rich in oxidiz-
able arachidonic and docosahexenoic acids (phos-
phatidylethanolamine and phosphatidylinositol)
and not so in the case of phosphatidylcholine, which
contains lesser amounts of these fatty acids, sug-
gesting that free radicals are responsible for the
alterations in membrane phospholipids. AB(25-35)
incubated with synaptosomal membranes stimu-

lated the release of phospholipid resident fatty acids
(Koppal et al., 1998). The greatest release was for
arachidonic acid, and this release was inhibited by
pretreatment of the synaptosomal membranes with
the free radical scavenger vitamin E. Conjugated
dienes, a marker for lipid peroxidation, were signif-
icantly elevated in brain membranes following AB
addition (Butterfield et al., 1996a).

Free radical-induced oxidation of arachidonic acid
results in the formation of isoprostanes, whose con-
centration has been shown to be a reproducible
guantitative marker of lipid peroxidation in vivo
(Morrow and Roberts, 1997). Oxidation of docosa-
hexenoic acid leads to the formation of compounds
called neuroprostanes (Roberts et al., 1998). Concen-
trations of isoprostanes and neuroprostanes in the
CSF of AD patients are significantly elevated com-
pared to controls (Montine et al., 1998; Roberts et al.,
1998). AB addition to rat hippocampal cultures leads
to increased isoprostane levels (Mark et al., 1999),
confirming AB-induced lipid peroxidation (Butter-
field et al., 1994).

Oxidation of PUFAs also results in the formation
of multiple aldehydes, of which HNE is one of the
more reactive and more prevalent ones. HNE is a
highly reactive «,8 unsaturated aldehyde, capable of
inhibiting DNA, RNA, and protein synthesis, inhib-
iting glycolysis, and modifying proteins (Esterbauer
et al., 1991). This alkenal forms covalent adducts
with proteins through Micheal addition or by Schiff
base reactions (Esterbauer et al., 1991; Uchida and
Stadtman, 1992). HNE levels are significantly ele-
vated in multiple brain regions (Markesbery and
Lovell, 1998) and in ventricular cerebrospinal fluid
(Lovell et al., 1997) in AD. The activity of glutathi-
one S-transferase (GST), an enzyme that detoxifies
HNE, is significantly lowered in AD (Lovell and
Markesbery, 1998). This diminished activity of GST
suggests a loss of protection against HNE in AD and
could lead to increased deleterious consequences of
oxidative stress. Exposure to AB causes a significant
increase in free and protein-bound HNE in cultured
rat hippocampal neurons when exposed to AB (Mark
et al., 1997a). HNE has been shown to induce
apoptosis in PC12 cells and cultured rat hippocam-
pal neurons, suggesting that this alkenal is a medi-
ator of oxidative stress-induced apoptosis (Kruman
et al., 1997). The membrane-damaging effects of AB
are also produced by HNE (Mark et al., 1995, 1997a)
and are discussed below.

Acrolein, the most reactive among the «,B-unsat-
urated aldehyde products of lipid peroxidation (Es-
terbauer et al., 1991), can be rapidly incorporated
into proteins (Uchida et al., 1998a,b). Acrolein mod-
ification of proteins has been shown to occur in the
neurofibrillary tangles in AD brains and not in con-
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trol brains (Calingasan et al., 1999). In vitro, acro-
lein modifies axonal cytoskeletal proteins (He et al.,
1995) and reacts rapidly with and depletes the an-
tioxidant glutathione (Horton et al., 1997). Both
HNE (Subramaniam et al., 1997) and acrolein (But-
terfield, vide infra) significantly alter the conforma-
tion of synaptosomal membrane proteins as mea-
sured by EPR spin labeling methods.

Numerous other aldehydic products of lipid per-
oxidation, with different carbon chain lengths, such
as malondialdehyde, propanal, butanal, pentanal,
and hexanal, have been identified (Esterbauer et al.,
1991). These reactive aldehydes, including HNE and
acrolein, with half-lives ranging from minutes to
hours, can diffuse to sites distant from that of their
origin and alter neuronal function. In addition to the
direct effect of AB on membrane proteins and phos-
pholipids leading to neuron death, secondary indi-
rect mechanisms induced by AB, involving HNE,
acrolein, and other products of lipid peroxidation,
may play an important role in neuronal toxicity.

5.3. Carbohydrate Oxidation

Nonenzymatic glycation of proteins through the
Maillard reaction, followed by subsequent Amadori
chemistry results in the formation of AGE involving
free radical intermediates (Munch et al., 1997). Re-
cent studies indicate a role for AGE in AD. AGE
have been found in diffuse and neuritic SP in AD
(Smithetal., 1994; Vitek et al., 1994). Aggregation of
soluble nonfibrillar AB in vitro is accelerated by
AGE-modified AB, suggesting that AGE may en-
hance SP formation in vivo (Vitek et al., 1994).
Fibrillar AB binds to RAGE, which is one of the cell
receptors for AGE, and generates oxidative stress,
activating NF-«B (Yan et al., 1997). This study sug-
gests that a free radical-dependent inflammatory
pathway, triggered by interaction of A on RAGE,
may be present in AD. Modification of proteins by
oxidation and glycooxidation and products of lipid
peroxidation can occur in an additive and synergis-
tic manner (Smith et al., 1995).

5.4. DNA Oxidation

Oxidation of DNA can result in numerous modifi-
cations including strand breaks and base modifica-
tions (Davies, 1995). Oxidized DNA bases, particu-
larly the adduct 8-hydroxy-2'-deoxyguanosine (8-
OHdG), serve as markers of DNA oxidation (Gabbita
et al., 1998; Lovell et al., 1999). A twofold increase in
DNA strand breaks has been described in the brain
in AD (Mullaart et al., 1990). 8-OHdG levels are
increased in AD (Gabbita et al., 1998; Lovell et al.,
1999; Lyras et al., 1997), and there is a threefold
increase in mitochondrial DNA oxidation in the pa-

rietal lobe in AD subjects compared with normal
controls (Mecocci et al., 1994). The 5-kb deletion, the
most common DNA alteration in human mitochon-
dria, was prominent in large hippocampal pyrami-
dal neurons in AD (Hirai et al., 1998) and is believed
to potentiate oxidative damage in vulnerable neu-
rons. Oxidative DNA alterations in AD may be re-
lated to altered message for antioxidant enzymes
(Aksenov et al., 1998a, Aksenov et al., 1998b, 1999;
Davis et al., 1997; Chandrasekaran et al., 1997). AB
can induce, directly or indirectly, the production of
O3~ (Beal, 1998), peroxynitrite (Estevez et al.,
1995), H,0, (Huang et al., 1999a), and “OH (via
Fenton chemistry), all of which can cause DNA dam-
age.

5.5. Production of Reactive Oxygen Species

AB has been shown to directly produce hydrogen
peroxide through metal ion reduction (Huang et al.,
1999a). Further, AB induces protein oxidation and
lipid peroxidation as discussed above. We reasoned
that ROS should, therefore, be detectable using flu-
orescence methods (Harris et al., 1995a, 1996; Yatin
et al., 1999a). The redox-sensitive neutral dye, 2',7'-
dichlorofluorescin diacetate, once transported into
hippocampal neuronal or astrocytic cultures, is con-
verted by esterases to anionic 2’,7'-dichlorofluores-
cin (DCF), which, following reaction with peroxyl
radicals or hydrogen peroxide, is converted to fluo-
rescent 2',7'-dichlorofluorescein. AB led to fluores-
cence in neuronal (Harris et al., 1995a; Yatin et al.,
1999a) and astrocytic (Harris et al., 1996) cell cul-
tures, indicating that AB-induced ROS production
had occurred. In both cell types, fluorescence was
inhibited by free radical scavengers (Harris et al.,
1995a, 1996; Yatin et al., 1999a). Figure 4 shows
that vitamin E blocks AB(1-42)-induced ROS forma-
tion in hippocampal neurons. Similar results, using
immortalized PC12 cells, and the redox-sensitive
dye MTT, which is converted by mitochondrial re-
ductive processes to colored formazan, have been
reported (Behl et al., 1994). Treatment of cells with
H,O, or AB reduced this conversion, consistent with
a more oxidizing intracellular environment. These
results are consistent with the model of AB-associ-
ated free radical oxidative stress and neurotoxicity
(Figs. 1 and 8), wherein AB triggers the formation of
ROS.

5.6. Cellular Dysfunction

ApB oxidatively modifies membrane protein and
lipids as discussed above, and therefore, a prediction
of the ApB-associated free radical oxidative stress
model for neurotoxicity (Fig. 1) in AD brain is that
ApB, either directly or through various ROS and lipid
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FIG. 4. Laser confocal fluorescence micrographs showing Ap(1-42)-induced generation of ROS (free radicals) in cultured hippocampal
neurons and their modulation by the free radical scavenger vitamin E. Increased yellow color represents more ROS. (Top left) Control
hippocampal neurons with all reagents except AB(1-42) are added. (Bottom left) AB(1-42) added to hippocampal neurons containing the
dye 2,7-dichlorofluorocin that is converted to fluorescent 2,7-dicholorfluoroscein by reaction with ROS results in a significant increase in
fluorescence over control values. (Top right) Pretreatment of hippocampal neurons with vitamin E significantly modulates Ap-induced
ROS formation detected by the dye. (Bottom right) Digitization of the fluorescence (average pixel intensity) showing the results. Error
bars represent SEM values. *P < 0.001 vs control, **P < 0.005 vs AB(1-42) (n = 3; each n is the average of 8—11 neurons).

peroxidation products produced, alters cellular func-
tion, leading to neurotoxicity. One locus where AB-
initiated oxidative processes lead to cellular dys-
function is probably the plasma membrane.
Oxidative damage to the plasma membrane by AB
appears to play a key role in the disruption of ion
homeostasis. AB administration to rat hippocampal
neurons causes impairment of Na™/K"-ATPase ac-
tivity followed by elevation of intracellular Ca®* lev-
els and ultimately cell degeneration (Harris et al.,
1995a, 1996; Mattson et al., 1993; Mark et al., 1995).
That the increase in levels of intracellular Ca®* is
secondary to loss of Na"/K"-ATPase activity was

shown by the observation that manipulations that
reduce Na* influx protected neurons (Mark et al.,
1995). Exposure of synaptosome preparations from
neurologically normal human brains to AB caused a
highly significant decrease in both Na*/K*-ATPase
and Ca®"-ATPase activities (Mark et al., 1995), sug-
gesting that this mechanism of AR toxicity is likely
to occur in the human brain. The loss of Mg®*-
ATPase required longer times, while the Na*/Ca?*-
exchanger was unaffected by AB peptides. HNE, too,
is toxic to neurons and astrocytes in cultures (Sub-
ramaniam et al., 1997, 1998; Mark et al., 1997a;
Montine et al., 1996) and caused crosslinking of tau
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into high-molecular-weight species. HNE, similar to
AB, impairs Na'/K"-ATPase activity and disrupts
calcium homeostasis in rat hippocampal neurons,
which finally leads to neuron death (Mark et al.,
1997a). Alterations in ion-motive ATPases could af-
fect the cell potential, thereby leading to the opening
of voltage-gated Ca®* channels with subsequent
Ca?* accumulation. Alterations in ion homeostasis,
particularly Ca?*, following A free radical oxida-
tive damage could have serious consequences on cell
function, ranging from disruption of various signal-
ing pathways and second messenger levels, to alter-
ations in membrane cytoskeletal proteins following
Ca®*-activated proteolysis, to compromised mito-
chondrial function and loss of ATP, and/or to activa-
tion of endonucleases. Nuclear transcription factor
activation and apoptotic processes are also Ca®*
sensitive. The AB-induced impairment of the ion-
motive ATPase activities was blocked by antioxi-
dants, suggesting that free radicals mediated the
inhibition process (Mark et al., 1995).

AB and HNE cause impairment of glucose and
glutamate transport and mitochondrial function in
rat neocortical synaptosomes and cultured neurons
(Mark et al., 1997b; Keller et al., 1997; Harris et al.,
1995b, 1996). Both species also induced accumula-
tion of mitochondrial reactive oxygen species and
reduced cellular ATP levels significantly. AB-in-
duced impairment of glucose and glutamate trans-
port was inhibited by antioxidants, suggesting that
free radicals are causally linked to this adverse ac-
tion of AB (Keller et al., 1997).

Normally glutamate is sequestered from neurons
by the astrocyte-resident, Na"-dependent glutamate
transport system. Once transported to the astrocyte
interior, glutamate is converted to glutamine by the
oxidation-prone enzyme GS. AB-induced oxidative
inhibition of glutamate transporters would result in
excessive accumulation of extracellular glutamate
and consequent sustained activation of excitotoxic
glutamate receptors. As noted above, AB peptides
also inhibit the activity of GS (Harris et al., 1995a;
Hensley et al., 1994b; Butterfield et al., 1997a; Ak-
senov et al., 1997). Hydroxyl radicals inhibit both GS
and the glutamate transporter (Volterra et al., 1994;
Stadtman, 1992). Others, using EPR, showed that
glutamate stimulation of NMDA receptors led to
intracellular free radicals (Lafon-Cazal et al., 1993).

AB- or HNE-associated impairment of glucose
transport would increase neuronal vulnerability to
excitotoxicity by depleting ATP levels and compro-
mising function of ion-motive ATPases. Energy de-
privation causes mitochondrial dysfunction and de-
pletion of ATP levels in rat hippocampal neurons
(Mattson et al., 1993). Impairment of glucose trans-
port precedes ATP depletion in cultured rat cortical

neurons exposed to AB (Mark et al., 1997b), suggest-
ing that depletion of ATP levels does not contribute
to impairment of glucose transport induced by AB
and HNE. These results suggest that the cumulative
effects of AB and HNE on membrane transport sys-
tems and mitochondria in synaptosomes may play
an important role in the energy failure in AD
(Ogawa et al., 1996; Swaab et al., 1998). Since crea-
tine phosphate is involved in cellular energy metab-
olism, inhibition of CK, known to occur in AD brain
(Hensley et al., 1995b) and by AB (Hensley et al.,
1994b; Yatin et al., 1999a), may augment the effects
of inhibition of the glucose transporter by AB or
HNE on the decreased energy utilization in AD
brain (Swaab et al., 1998; Ogawa et al., 1996; Munch
et al., 1998; Meier-Ruge et al., 1997).

Ap disrupts carbachol-stimulated, G-protein-fa-
cilitated signal transduction in cultured rat corti-
cal neurons (Kelly et al., 1996). This effect proba-
bly involves the “uncoupling” of the muscarinic
receptors from the G-protein because ligand-bind-
ing studies suggested that AB did not interfere
with the binding of carbachol to receptors (Kelly et
al., 1996). Experiments on postmortem brain tis-
sue obtained from AD patients showed evidence of
impaired coupling of muscarinic receptors to G-
proteins (Pearce and Potter, 1991). Disruption of
this cholinergic signaling pathway is probably free
radical mediated since the antioxidant vitamin E
attenuated this effect of AB (Kelly et al., 1996).
HNE added to rat forebrain damages cholinergic
neurons and impairs visuospatial memory (Bruce-
Keller et al., 1998b). This finding may have rele-
vance to loss of cholinergic neurons and memory
dysfunction in AD. These results suggest that this
defect may partially explain the relative ineffec-
tiveness of cholinergic agents in ameliorating cog-
nitive symptoms of AD.

Alterations in brain polyamine metabolism may
be critical for neuron survival after free radical-
initiated neurodegenerative processes (Bernstein
and Muller, 1995). Treatment of rat embryonic hip-
pocampal neuronal cultures with AB peptides in-
creased ornithine decarboxylase activity and sper-
midine uptake, suggesting that oxidative stress
upregulates the polyamine mechanism for the repair
of free radical damage (Yatin et al., 1999d). Pretreat-
ment of the cells with vitamin E prior to AB expo-
sure decreased ODC activity and spermidine uptake
to control levels. Subsequent studies showed that
spermine, in concert with AB(1-42), is especially
toxic to neurons (Yatin et al., 2000b). These poly-
amine results provide further evidence for the in-
volvement of free radicals in AB-induced oxidative
stress.



REVIEW: AMYLOID-ASSOCIATED FREE RADICAL OXIDATIVE STRESS 197

6. MODULATION OF AB-INDUCED OXIDATIVE
STRESS BY FREE RADICAL SCAVENGERS

If an AB-associated free radical oxidative mecha-
nism is operative in AD neurotoxicity, as predicted
by the shrapnel model (Fig. 1), then free radical
scavengers may provide protection against AB-de-
rived membrane damage (Butterfield et al., 1999c).
Throughout this article, numerous references have
been cited that provide evidence for such protection.
Additionally rifampicin was effective in preventing
the formation of the PBN-AB spin adduct (To-
miyama et al., 1996). The semiquinone component of
the drug was thought to trap the free radicals pro-
duced. Cocktails containing catalase are reported to
protect neurons from AB damage (Puttfarcken et al.,
1996; Manelli and Puttfarcken, 1995). Other anti-
oxidants ranging from new experimental antioxi-
dants such as EUK-8 (Bruce et al., 1996), U-83836E
(Zhou et al., 1996), and U-78517F (Kumar et al.,
1994) to the spin-trapping antioxidant compound
PBN (Behl et al., 1994) are reported to prevent AB-
induced neurotoxicity. Other compounds with anti-
oxidant capability, such as nordihydroguaiaretic
acid (Goodman et al., 1994) and estrogens (Goodman
et al., 1996), are reported to offer protection to neu-
rons from AR toxicity. The antioxidants melatonin
and vitamin E protected against AB-induced lipid
peroxidation (Daniels et al., 1998; Koppal et al.,
1998), but not against HNE-induced alterations
(Subramaniam et al., 1998; Mark et al., 1997a;
Keller et al., 1997) as expected, since HNE is a
product of free radical-induced lipid peroxidation
and not a free radical itself. Lipid peroxidation stim-
ulated by AB (Butterfield et al., 1994) and blocked by
antioxidants (Koppal et al., 1998) has also been re-
ported by others (Gridley et al., 1997; Daniels et al.,
1998; Avdulov et al., 1997; Mark et al., 1997; Behl et
al., 1994).

A few papers have appeared that suggest that
although A is confirmed to cause lipid peroxidation
that is blocked by free radical scavengers, antioxi-
dants did not rescue cells from apoptosis and cell
death (Yao et al., 1999; Lockhart et al., 1994; Pike et
al., 1997). However, methodological differences,
such as the use of 1- to 3-day-old, still-developing
cells, which may not have fully expressed receptors,
such as the NMDA receptor and transport proteins,
may account for the lack of antioxidant protection
against neurotoxicity seen in these studies. While
one must remain open-minded about AB and its
effects on cell death, the numerous references cited
above together with a large number of papers show-
ing that antioxidants do protect neurons from AB-
induced apoptosis and prevention of cell death (But-
terfield, 1999a,b; Mook-Jung et al., 1999; Chyan et

~Asp!-Ala2-Glu3-Phe*-Arg5-Hist-Asp-Ser3-Gly?-Tyr'0-Glu!!-Val12-
His!3-His!4-Gln'5-Lys!6-Leu!7-Val!8-Phe!9-Phe?0-Ala?!-Glu?2-Asp?-
Val?-Gly?-Ser?-Asn?’-Lys2-Gly?%- Ala*-Ile}-Tle32-Gly*-Leu-
Met35-Val?-Gly?-Gly?8-Val?-Val#0-Ile* - Ala*?

FIG. 5. Amino acid sequence of AB(1-42). The peptide con-
tains a single methionine, residue 35, which is susceptible to
oxidation.

al., 1999; Stephenson et al., 1999; Mark et al., 1999;
Calingasan et al., 1999) put the great preponderance
of evidence as supporting the notion that AB-in-
duced lipid peroxidation and cell death are related.

7. IMPORTANCE OF METHIONINE TO
AB-ASSOCIATED OXIDATIVE STRESS

The precise chemical mechanisms involved in AB-
associated free radical ROS production and observed
neurotoxicity are not yet known. A number of stud-
ies have focused on the role of Met35 in AD since it
is the residue in AB most susceptible to oxidation in
vivo, especially under conditions of oxidative stress
(Vogt, 1995) (Fig. 5). Indeed, examination of senile
plaque-resident AB(1-40) showed a high proportion
of methionine sulfoxide present (Naslund et al.,
1994). Methionine, like other dialkyl sulfides, is
known to participate in unusual free radical reac-
tion chemistry (Schoneich et al., 1994). In addition,
oxidation of methionine residues in model peptides
is known to significantly alter secondary structure
(Dado and Gellman, 1994); namely, methionine ox-
idation to the sulfoxide leads to predominantly
B-sheet conformation, which is the conformation
adopted by toxic AB (Selkoe, 1994). This section de-
scribes our experiments that establish the critical
role that methionine plays in AB-induced free radi-
cal oxidative stress.

7.1. Free Radical Production

As noted above and displayed in Fig. 2, the full-
length amyloid peptides AB(1-40) and AB(1-42) pro-
duced a 4-line EPR spectrum with purified PBN,
and in both cases the EPR spectrum was abolished
upon replacement of the methionine with norleucine
(Figs. 2J and 2K) (Yatin et al., 1999b; Varadarajan et
al., 1999). This replacement is a simple substitution
of the sulfur atom in the thioether of methionine by
a CH, group. One or more of the three histidines of
AB have been suggested to be part of a copper-
binding domain, and the bound Cu?* is suggested as
being responsible for abstracting an electron from
the amyloid peptide and generating a peptidyl rad-
ical (Huang et al., 1999a,b). We observed that AB(1-
42) with all three histidines replaced by tyrosine,
which has a Cu?*-binding affinity at least two or-
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ders of magnitude lower (Martell and Smith, 1974),
still produced a 4-line EPR spectrum with PBN (Fig.
2L) (Butterfield et al., 1999b; Varadarajan et al.,
2000b). Cu?" binding cannot be ruled out in the
tyrosine substituted peptide. However, addition of
Cu?" to AB(1-42)Met35NIle-PBN mixtures did not
yield a 4-line EPR signal; instead, a 6-line spectrum
was observed (Butterfield et al., 1999b; Varadarajan
et al., 2000b). Control PBN solutions, lacking pep-
tide, also produced a 6-line spectrum with added
Cu?*, probably due to a Cu?"-mediated breakdown
of PBN and subsequent trapping of a C- or an O-
centered radical such as a tert-butyl radical by the
excess (50 mM) PBN present. The results suggest
that the methionine residue of AB(1-42) and AB(1-
40) is critical to the free radical generation. This
suggestion was strengthened by studies with the
truncated peptide, AB(25-35) (Varadarajan et al.,
1999). Incubation of the 11-amino-acid amyloid frag-
ment AB(25-35), containing the methionine as the
terminal residue, with PBN produces a strong 4-line
EPR spectrum. As noted above, the 4-line-producing
species has been identified to be tert-butyl hydroni-
troxide. There was no spectrum observed in the case
of the truncated peptide AB(25-34) lacking the me-
thionine residue (Varadarajan et al., 1999). Simi-
larly, AB(25-35) with the methionine residue re-
placed by either valine or structurally similar
norleucine, also produced no EPR-detectable signal
upon incubation with PBN (Varadarajan et al.,
1999). Similar to the cases of AB(1-42) and AB(1-40)
(Yatin et al., 1999b; Varadarajan et al., 1999),
AB(25-35) with methionine replaced by norleucine
no longer caused protein oxidation in or toxicity to
hippocampal neurons, in marked contrast to the un-
modified peptides in each case (Varadarajan et al.,
1999; Yatin et al., 1999b).

7.2. Neuronal Toxicity

AB(1-42), AB(1-40), and AB(25-35) are all toxic to
cultured hippocampal neurons, as mentioned above
(Yatin et al., 1999a,b,c,d; Varadarajan et al., 1999;
Butterfield, 1997; Mattson et al., 1997). Replace-
ment of methionine by norleucine in all three pep-
tides completely abrogates neuronal toxicity (Fig. 6)
(Varadarajan et al., 1999; Yatin et al., 1999b). Re-
placement of the methionine with valine or removal
of the methionine in AB(25-35) also abolished the
peptide’s toxicity to cultured neurons (Varadarajan
et al., 1999). Replacement of the three histidine res-
idues by tyrosine did not affect the toxicity of the
parent AB(1-42). These results suggest that if Cu®*
is important in AB(1-42)-induced neurotoxicity, it is
so only because of the methionine. These toxicity
results are consistent with the EPR results listed
above and with the notion of the methionine residue
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FIG. 6. Neurotoxicity and changes of protein carbonyl content
in hippocampal neurons treated within the various ApB peptides.
Neurotoxicity was measured by the MTT assay. Neurons with
impaired mitochondrial function are unable to reduce the MTT
dye effectively relative to healthy cells. Neuronal toxicity was
evaluated 24 h after addition of the peptides. Statistical compar-
isons were made using the Student’s t test. Error bars represent
SD values. **P < 0.002 for AB(1-42) and AB(1-42)His6,13,14Tyr
vs control (n = 3). None of the other peptides were significantly
toxic to the neurons. Protein carbonyl levels are presented as an
average of two to three different trials. For each trial, anti-DNP
staining was performed three times and averaged. Statistical
comparisons were made using the Student’s t test. Error bars
represent SD values. *P < 0.006 for AB(1-42) and ApB(1l-
42)His6,13,14Tyr vs controls. There was no significant increase in
protein carbonyl content compared to control values for the other
peptides. See text.

being critical to a free radical process of AB toxicity
to neurons.

7.3. Membrane Protein Oxidation

Concomitant with the spin-trapping and neuronal
toxicity studies cited above, addition of AB(1-42),
AB(1-40), and AB(25-35) to neurons caused a signif-
icant increase in protein oxidation manifested by
increased levels of protein carbonyls, whereas the
carbonyl levels in hippocampal neurons treated with
peptides having methionine substituted by nor-
leucine, even with added Cu®" (in the case of AB(1-
42)), were no different from control values (Fig. 6)
Varadarajan et al., 1999; Yatin et al., 1999b). Con-
sistent with the EPR and neurotoxicity studies cited
above, the extent of protein oxidation by the tyrosine
substituted AB(1-42) was similar to that of the par-
ent peptide, suggesting the importance of methio-
nine in AB-associated free radical oxidative stress
and neurotoxicity. These findings also suggest an
essential requirement for methionine in any role of
metal ion-mediated oxidative stress and cell death.
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7.4. In Vivo Studies

If the results of in vitro studies of AB in neuronal
and synaptosomal membranes suggesting that Ag is
associated with free radical oxidative stress and that
the methionine residue of AB is important in this
process are applicable for neurotoxicity in AD brain,
then in vivo models in which AB(1-42) are expressed
should show protein oxidation. Consistent with this
prediction, Caenorhabditis elegans transgenic ani-
mals expressing human, full-length ApB(1-42)
showed strong evidence of protein oxidation (Yatin
et al., 1999b), a key marker of free radical oxidative
stress. Mutation of Met-35 to Cys-35 resulted in
healthy animals that showed no evidence of protein
oxidation, consistent with the hypothesis that
Met-35 is important in AB-associated free radical
oxidative stress (Yatin et al., 1999b). The totality
and self-consistent nature of the findings suggest
that methionine is critical to AB-associated neuronal
protein oxidation and neurotoxicity and to the AB-
associated EPR spectra observed. The results also
suggest that redox metal ions, potentially involved
in AB-associated oxidative stress properties, are im-
portant only because of the methionine residue. In
the absence of methionine both in vitro and in vivo
studies suggest that no oxidative stress occurs.

The results suggest that the methionine residue
and Ap-associated free radical oxidative stress are
intimately linked. Numerous other reports confirm
this view. Pike et al. (1995) reported that the C-
terminal region of AB(25-35) was critical in its neu-
rotoxicological properties and that modifications of
the 33-35 region of the amyloid peptide led to a loss
of peptide aggregation. Also in agreement with the
potential importance of methionine in AB chemistry
and pathology, Snyder et al. (1994) reported that
synthetic AB(1-40) containing methionine sulfoxide
in residue 35 formed fibrils at twice the rate of
unmodified AB(1-40), and Naslund et al. (1994)
found that SP resident AB(1-40) in AD brain is rich
in methionine sulfoxide. Non-active-site-resident
methionine residues in several enzymes protect the
enzyme from oxidative insults and become con-
verted to methionine sulfoxide in the process (Le-
vine et al., 1999). The enzyme methionine sulfoxide
reductase in brain then reduces the oxidized methi-
onine residues back to methionine (Levine et al.,
1999), acting as a neuroprotective enzyme. The ac-
tivity of this reducing enzyme is lowered in AD (Gab-
bita et al., 1999), consistent with an oxidative envi-
ronment in AD brain.

Consistent with the notion that A induces oxida-
tive stress in vivo, injection of AB directly into ro-
dent brain together with protease inhibitors pro-

duced protein oxidation and lipid peroxidation
(Frautschy et al., 1998b).

8. FIBRILS AND AB-ASSOCIATED OXIDATIVE STRESS

An important question concerning the protein
chemistry of A toxicity is whether it is the three-
dimensional conformation of AB fibrils that is nec-
essary for inducing neuron death or whether it is
oxidative stress associated with the formation of
fibrils (i.e., aggregation) that damages neurons. Sol-
uble A monomers in the AD brain probably aggre-
gate to form oligomers or fibrils (Podlisny et al.,
1998), and soluble AB oligomers have been isolated
from normal and AD brains (Kuo et al., 1996). The
levels of soluble AB were found to be greater in AD
brain than in controls, and the proportion of soluble
AB(1-42) was significantly increased over soluble
AB(1-40) species in AD patients. Similar results
have been obtained by Funato et al. (1998). Several
recent studies have shown that low-molecular-
weight oligomers of AB are neurotoxins. Walsh et al.
(1999) reported that AB monomers and dimers are
nontoxic, while low-molecular-weight oligomers,
termed protofibrils, are toxic. One study has sug-
gested that water-soluble dimeric species are also
neurotoxic (Roher et al., 1996). Lambert et al. (1998)
found that small, low-molecular-weight oligomers of
AB(1-42) are several orders of magnitude more po-
tent neurotoxins than high-molecular-weight fibril-
lar species of AB(1-40). Interaction of AB(1-42) or
AB(1-40) with different brain-resident proteins can
lead to different results, but of importance to this
discussion, GS or apoJ interaction with AB leads to
soluble, aggregated, nonfibrillar peptides that are
more toxic than AB in fibrillar form (Oda et al., 1995;
Aksenov et al., 1996).

All the neurotoxic AB peptides that we investi-
gated, viz. AB(1-42), AB(1-42)His6,13,14Tyr (Fig. 7),
AB(1-40), and ApB(25-35), form fibrillar structures
upon incubation. The reverse sequence, AB(42-1),
does not form fibrils under identical conditions, nor
does the scrambled AB(25-35). That fibrils per se
were not required for toxicity (Oda et al., 1995; Ak-
senov et al., 1996; Walsh et al., 1999; Lambert et al.,
1998) was confirmed by studies with the nonneuro-
toxic, non-protein-oxidizing, and non-free-radical-
forming AB(1-42)Met35NIe, which also forms fibrils
(Fig. 7). It is therefore evident that the methionine
residue is critical to the observed neurotoxicity,
while fibril formation itself, per se, is not required
for neurotoxicity. Consistent with this notion, vita-
min E incubation with AB(1-42) blocks protein oxi-
dation in and toxicity of hippocampal neurons (Yatin
et al., 2000a), but does not inhibit fibril formation
(Varadarajan et al., 2000a). Rather, small aggre-
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Ap(42-1)

AB(1-42)His6,13,14Tyr

FIG. 7. Electron microscopy of AB peptides incubated at 37°C
for 48 h. Neurotoxic and oxidative stress-producing AB(1-42) and
AB(1-42)His 6,13,14Tyr and the nonneurotoxic and the nonoxida-
tive stress-producing AB(1-42)Met35NIe form fibrils. The nonneu-
rotoxic reverse sequence AB(42-1) does not form fibrils. See text.

gates are likely the toxic species of AB, and the
inhibitory role of vitamin E likely stems from its
antioxidant properties rather than blockage of AB
fibril formation.

Numerous studies indicate a central role for AB in
AD pathogenesis. None of these studies, however,
definitively indicate the form or site of action of AB
neurotoxicity. Until the mechanism of AB neurotox-
icity is understood, it will be difficult to explain the
topography of neurodegeneration (Small, 1998).
Strong circumstantial evidence supports the notion
that low-molecular-weight diffusible forms of AB
may be important for neurotoxicity (Walsh et al.,
1999; Lambert et al., 1998; Aksenov et al., 1996; Oda
et al.,, 1995), and our results, confirmed in many
laboratories as discussed above, suggest that oxida-
tive stress, perhaps emanating from the methionine
residue of AB, plays an important role in neurotox-
icity in AD brain.

9. CONCLUSIONS

Given the centrality of AB to the pathogenesis of
AD, and the significant oxidative stress present in
AD brain, an Ap-associated oxidative stress model
for neurodegeneration in AD provides a framework
that unites these observations. The aggregate of all
the studies presented in this review overwhelmingly
support, in our opinion, the notion of a pivotal role
for AB-induced oxidative stress in AD (Fig. 8). In
addition to its direct neurotoxic oxidative effects,
perhaps with the involvement of redox metal ions,

ApB can potentiate the toxic effects of a variety of
different neuronal insults including excitatory
amino acids, glucose deprivation, energy depletion,
and protein and lipid oxidation. Addition of AB to
primary neuronal cultures results in inhibition of
ion-motive ATPases, alteration of cell potential, and
consequent influx of Ca®". Since AB also inhibits the
Ca?* pump, intracellular levels of Ca®" attain dele-
terious levels, resulting in many destructive pro-
cesses, such as proteolysis, breakdown of nuclear
and mitochondrial DNA, and induction of apoptotic
processes. AB can impair mitochondrial redox activ-
ity and increase the generation of free radicals such
as superoxide. AB stimulates i-NOS, resulting in an
increase in levels of nitric oxide. Fibrillar AB can
trigger an inflammatory response, most likely by
binding to RAGE receptors or by activation of micro-
glia; the latter causes a respiratory burst resulting
in the generation of nitric oxide and superoxide.
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FIG. 8. Schematic diagram of Ap-associated oxidative stress
and neurotoxicity in Alzheimer’'s disease brain. This model is
consistent with a central role of A in AD pathogenesis and the
extensive oxidative stress under which AD brain exists. The
model unites much of the literature on AB-related research into a
single theoretical framework. See text.
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Nitric oxide combines with superoxide to form the
highly toxic peroxynitrite. AB has also been shown
to cause H,0O, accumulation, which could lead to the
toxic hydroxyl radical formation via Fenton chemis-
try.

It is likely that AD is associated with multiple
etiologies and pathogenic mechanisms. This review
demonstrates that AB-associated free radicals and
the resultant oxidative stress are part of the mech-
anism that is involved in the pathogenic cascade
that leads to neurodegeneration in AD brain. The
prevention of several of the AB-associated deleteri-
ous effects by free radical antioxidants strengthens
the notion of free radical involvement in AB toxicity
and suggests the potential usefulness of brain-acces-
sible free radical antioxidants or elevating levels of
endogenous antioxidants as therapeutic strategies
for AD.
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