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Abstract. Aging is the major risk factor associated with neurodegenerative diseases, including Alzheimer’s disease (AD). Until
now no clear understanding of the mechanisms of initiation and progression of this dementing disorder exists. Based on the
studies that have been conducted so far amyloid �-peptide (A�), a protein found in senile plaques, one of the key pathological
hallmarks of AD, has been reported to be critical in the pathogenesis of AD. Studies from our laboratory and others showed
that A� can induce oxidative stress, which leads to oxidative modification of biomolecules, thereby diminishing the normal
functions of neuronal cells and eventually leading to loss of neurons and AD. In this review paper, we summarize evidence of
oxidative stress in brains of AD and mild cognitive impairment patients, as well as the results from redox proteomics studies.
The investigations have provided insights into the downstream effects of oxidative modification of key brain proteins in the
pathogenesis of AD. Based on these redox proteomics results, we suggest future areas of research that could be considered to
better understand this devastating dementing disorder.
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on Alzheimer’s disease (AD), many of which have
dealt with oxidative stress and redox proteomics
analysis in AD and amnestic mild cognitive impair-
ment (MCI), and on some future studies these
papers suggest. Accordingly, this review paper sum-
marizes evidence of oxidative stress in AD and
MCI brain and results using redox proteomics, fol-
lowed by our view of some future directions in
AD research. Aging is the major risk factor associ-
ated with neurodegenerative diseases, including AD,
which is histopathologically characterized by the pres-
ence of senile plaques (SP), neurofibrillary tangles
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(NFTs), and loss of synapses [1]. However, until
now the exact mechanism(s) of AD progression or
pathogenesis largely remain unknown. Studies involv-
ing familial AD suggested that the mutations of
presenilin-1, presenilin-2, and amyloid-β protein pre-
cursor (AβPP) genes cause familial AD (FAD), and
implicate amyloid �-peptide (A�) as the underlying
cause for the onset of pathology, clinical presenta-
tion, and biochemical alterations in this devastating
disease. In addition, mutation in other genes, such
as apolipoprotein E allele 4 (APOE 4), endothelial
nitric oxide synthase-3, phosphatidylinositol-binding
clathrin assembly protein (PICALM), clusterin (CLU,
also called apolipoprotein J], and �2-macroglobulin,
have been suggested as risk factors for AD [2–5].

The main component of the SP is a 40–42 amino
acid peptide, A�, generated by the proteolytic cleav-
age of A�PP by the action of �- and �-secretases [6].
The A�-peptide exists in both soluble and insouluble
forms, and has been shown to be toxic. The toxicity
induced by A� has been associated with the sin-
gle methionine (Met) residue present at 35 position
in A� peptide [7, 8]. Met can undergo one-electron
oxidation to form sulfuranyl or hydroxysulfuranyl
radical cations, which can abstract allylic hydrogen

atoms from phospholipid acyl chains, thereby initiat-
ing the lipid peroxidation via chain reaction processes
and consequently in the generation of highly reactive
products such as 4-hydroxy-2-trans nonenal (HNE)
and acrolein [7, 9]. Since the plasma membrane and
organelle membranes have both lipid and protein
components, the generation of reactive products like
HNE by lipid peroxidation makes the membrane pro-
teins in the membrane highly susceptible to oxidative
modification via Michael addition, which affects the
protein structure and eventually impairs cellular func-
tion as reported in AD [10, 11] (Fig. 1). Studies
from our laboratory and others showed that lack of
Met leads to significantly diminished oxidative stress
[12–14].

The importance of A� in inducing oxidative stress
and being a key player in AD pathogenesis is supported
by the studies involving Down syndrome, individu-
als characterized by a trisomy of chromosome 21.
The extra copy of A�PP gene in these individuals
leads to increased levels of A�, and correlated with
increase oxidative stress and AD-like pathology if they
live long enough [15, 16]. However, until now it is
not clear what the first step is that leads to increas-
ing load of A�. Individuals with AD haves elevated
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Fig. 1. Amyloid-� (A�) peptide generated by the proteolytic cleavage of amyloid-� protein precursor (A�PP) is important in inducing oxidative
and nitrosative damage in AD and is key in the progression of this dementing disorder. Lipid peroxidation induced by bilayer-soluble oligomeric
A�1-42 and mitochondrial accumulation of this neurotoxic peptide lead to a cascade of events schematically depicted here. Other cellular changes
are not indicated, but may include oxidation of nuclear and mitochondrial DNA.
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levels of cerebral A� and increased markers of
oxidative stress such as protein carbonylation, pro-
tein nitration, HNE, acrolein, 8-hydroxy guanosine,
and advanced glycation end products. [17–28]. A�-
induced oxidative stress is further supported by a
number of in vitro and in vivo studies [29–33]. Fur-
ther, elevated levels of oxidative stress have also been
found in brains from subjects with MCI, arguably the
earliest form of AD, and early AD [21, 26, 29, 34–36].
Individuals with preclinical AD (PCAD) have signifi-
cant levels of A� deposition, but no significant increase
in oxidative stress compared to age-matched control,
which is consistent with the recent finding that small
oligomers of A� are highly toxic in these individu-
als. Indeed, the oligomeric form of A� is of lower
concentration in brains of PCAD subjects compared
to AD and MCI [37, 38]. A�1-42 has been shown to
aggregate more quickly than A�1-40 and is proposed
to play a central role in AD pathogenesis. The evi-
dence of A�1-42 being involved in AD pathogenesis is
largely derived from the observation that FAD cases
have increased A� load and increased oxidative stress
[39].

OXIDATIVELY-MODIFIED PROTEINS

Early approaches used to gain insight into the
specific protein targets of oxidative modification
involved immunoprecipitation techniques, in which
a protein of interest was immunoprecipitated and
then probed with the antibody of the type of mod-
ification that was to be tested. This technique is
labor intensive, time consuming, and additionally
requires the availability of the antibody of the pro-
tein that needed to be tested. To achieve the goal
of identification of multiple oxidatively-modified
brain proteins simultaneously, our laboratory pio-
neered a technique called redox proteomics [40–44].
One manifestation of redox proteomics couples
two-dimensional gel electrophoresis (2D) with iso-
electrofocusing (IEF) to separate the large number
of brain proteins followed by protein transfer to
a 2D Western blot on which proteins are probed
for protein carbonyls, 3-NT, or bound HNE [41,
43, 45–47]. Sophisticated imaging analysis, cou-
pled with trypsin digestion and use of software,
identified spots of interest, and mass spectrometry
allowed interrogation of protein databases that led
to the identification of a large number of targets of
oxidation.

PROTEIN OXIDATION: CARBONYLATION
AND NITRATION

Beta-actin and creatine kinase BB have been identi-
fied as specifically oxidized proteins in AD brain using
2D electrophoresis and 2D Western blots [48]. These
techniques form the basis of the methodology needed
to further examine the role of oxidative modifications
of specific brain proteins in AD pathogenesis and have
led to the development and use of redox proteomic
[44] techniques to identify carbonylated brain proteins
in AD [41, 42, 49]. 2D gel electrophoresis coupled with
mass spectrometry [44, 45] have allowed the discovery
of increased carbonylation creatine kinase BB, glu-
tamine synthase, ubiquitin carboxy-terminal hydrolase
L-1 (UCH L-1), dihydropyrimidinase-related protein
2 (DRP-2), �-enolase and heat shock cognate 71 in
AD inferior parietal lobule (IPL) compared to age-
matched controls [41, 42, 50]. Subsequent studies
of AD hippocampus demonstrate specific carbony-
lation of peptidyl prolyl cis-trans isomerase (Pin1),
phosphoglycerate mutase 1, UCH L-1, DRP-2, car-
bonic anhydrase II, triose phosphate isomerase (TPI),
�-enolase, and �-SNAP compared to age-matched
controls [45]. Consistent with the notion that oxida-
tive modification of proteins leads to dysfunction of
normal cellular processes in AD, the activities of
Pin1, enolase, and carbonic anhydrase II were sig-
nificantly lower in AD hippocampus compared to
matched tissue samples from control subjects [45].
Alterations in enzymatic function in these systems
could contribute to pathogenesis of AD through inhi-
bition of cellular degradation machinery, alteration of
protein conformation, decreased cerebrospinal fluid
production, and impairment in cellular metabolic
processes.

Others [51] using redox proteomics showed
significant decreased protein carbonyls in malate dehy-
drogenase 1 (MDH), glutamate dehydrogenase, 14-3-3
protein zeta/delta, aldolases A and C, and increased
oxidation of carbonic anhydrase 1. The sample pro-
cessing in this study did not use detergents and may
have led to identification of fewer oxidized proteins
than that seen in other studies as a result of decreased
exposure of protein carbonyls. More recent studies
identified DJ-1 as a carbonylated protein in the frontal
cotex of AD patients [52]. In the IPL of FAD sub-
jects, increased carbonylation of UCH-L1, �-enolase,
actin, and dimethylarginine dimethylaminohydrolase
1 (DMDMAH-1) have been reported [35]. Others
also reported oxidation and accumulation of proteins
like UCH L1, ATP synthase, and Cu,Zn-superoxide
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dismutase in AD brain [49, 53, 54], confirming our
prior results.

Many of the proteins that are oxidatively modified in
AD brain have roles in energy metabolism. This obser-
vation may contribute to the results of PET studies that
demonstrate decreased glucose utilization in AD brain.
The extent of oxidatively-modified brain proteins by
proteomics correlates well with AD pathology, includ-
ing both SP and NFT burden [41–43, 45]. Further, the
identification of common targets of protein carbonyla-
tion between FAD, sporadic AD, and MCI is consistent
with the idea that increased oxidative stress is invariate
in respect to cause (genetic versus sporadic) or stage
(amnestic MCI versus dementia) in the pathogenesis
of AD [29].

Brains from subjects with MCI also demonstrates
increased levels of protein carbonyls [26, 45, 55].
Redox proteomics studies in MCI hippocampus led to
the identification of �-enolase, glutamine synthetase,
pyruvate kinase M2, and Pin1 as specifically carbony-
lated proteins, recapitulating many of the findings seen
in fulminate AD brain tissue [34]. Recent reports iden-
tified oxidatively modified carbonic anhydrase II, heat
shock protein 70, mitogen activated protein kinase I,
and syntaxin binding protein I in MCI indexed by ele-
vated protein carbonyls [56].

The redox proteomic studies of brain from subjects
with AD and MCI identified proteins such as enolase,
Pin1, and glutamine synthetase as targets of carbony-
lation common to both AD and MCI. The functions
of these proteins are important not only in regulating
energy metabolism, but have also been linked to tau
hyperphosphorylation, alterations in protein confor-
mation, A�PP processing, and glutamate regulation,
all of which are thought to be relevant to neurode-
generative processes in AD [56]. Of interest, not all
brain proteins that appear to be targets of protein car-
bonylation at an early stage (MCI) appear in advanced
stage (AD). This suggests that the specific targets of
oxidative stress vary with stage of disease and rep-
resent a specific rather than non-selective injurious
process. Such findings may have implications for the
use of specific disease modifying treatments in rela-
tion to stage of disease. It is possible that oxidatively
induced alterations in specific cellular pathways con-
tribute specifically to the disease process early on,
altering transcription and translational mechanisms
that may further damage neurons. Such transcriptional
and translational alterations can further reduce the spe-
cific substrates for carbonylation, exacerbating the loss
of function caused by oxidation early in the disease pro-
cess. As neuronal injury ensues, the effects of oxidative
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Fig. 2. The oxidative modification of proteins affects a number of pathways in AD and amnestic MCI, arguably the earliest form of AD. The fact
that the same pathways are affected in MCI as in AD suggest that alterations in these pathways could be involved in the progression of amnestic
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damage become more widespread and non-selective as
part of the end-stage process of AD.

Figure 2 presents potential pathways affected by
protein oxidation in AD and amnestic MCI revealed
by redox proteomics. Overlap of pathways in these
two conditions involved in energy metabolism, neuro-
transmitter function, neuritic abnormalities, cell cycle,
tau phosphorylation, A� production, pH regulation,
and antioxidant system are consistent with the notion
that these pathways could be involved in the progres-
sion of amnestic MCI (with memory loss) to AD (with
dementia).

PROTEIN NITRATION IN AD AND MCI

Redox proteomics studies have identified a large
number of proteins that have specifically nitrated
Tyr residues in AD hippocampus and IPL compared
to control brain, including �- and �-enolase, lactate
dehydrogenase, neuropolypeptide h3, TPI, and �-actin
in AD IPL [43], and �-enolase, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), ATP synthase
�-chain, carbonic anhydrase-II, and voltage-dependent
anion channel protein in AD hippocampus [19].
These nitrated proteins are involved in various cellular
functions such as energy metabolism, structural main-
tenance, pH regulation, and mitochondrial function.
Oxidative modification (i.e., nitration, carbonylation,
etc.) may alter protein functionality [19]. Our redox
proteomics finding of excess nitration of TPI was
recently confirmed by Guix et al. [57] in hippocampus
and frontal cortex of AD subjects, suggesting a link
among decreased glucose metabolism via an impaired
glycolytic pathway, nitrosylation of TPI, and the for-
mation of A� and paired helical filaments. However, it
is not clear why, in spite of oxidative modification, its
activity remains unchanged in AD brain. In contrast,
Reyes et al. demonstrated nitration of Tyr 18 followed
by Tyr 29 of tau, which is mostly associated with or
in close proximity to amyloid plaques [58]. Hence,
nitration of proteins may reflect underlying posttrans-
lational modification of proteins in AD.

Consistent with this notion, increased levels of 3-NT
in MCI hippocampus and IPL using immunochem-
istry were reported [59]. There is also evidence for
AD-specific nitration of MDH, �-enolase, glucose
regulated protein precursor, aldolase, glutathione-S-
transferase Mu, multidrug resistant protein-3, and
14-3-3 protein � in MCI IPL [46]. In MCI hip-
pocampus, �-enolase, MDH, peroxiredoxin 6 (PR
VI), DRP-2, fascin 1, and heat shock protein A8

were identified as specifically nitrated compared to
age-matched controls [46]. These redox proteomics-
identified nitrated proteins in MCI are involved in
the regulation of a number of important cellular
functions including: energy metabolism, cellular sig-
naling, antioxidant, and detoxification, in addition
to regulating structural functions of brain cells. The
identification of some of the brain protein targets of
nitration in common between amnestic MCI and AD
is consistent with the notion that these brain proteins
might contribute to the progression of and increased
synapse and functional loss in AD [19, 43, 46]. We
showed increased nitration of p53 protein in MCI IPL
compared to age-matched control and suggested that
the oxidation of p53 may be involved in neuronal loss
[60].

A recent study by Reiderer et al. [61] reported S-
nitrosyl-cysteine modification of DRP-2, �-internexin,
glutamate dehydrogenase 1, �-enolase, GFAP, MDH,
ProSAAS precursor protein, proopiomelanocortin,
proenkephalin, and septin in the entorhinal cortex of
AD, and suggested that A� activation of glial cells
surrounding the SP might have led to increased nitro-
sylation of GFAP contributing to the pathogenesis of
AD. Protein disulfide isomerase, an enzyme that cat-
alyzes thiol–disulphide exchange, has been reported
to be S-nitrosylated in AD brain [62]. Increased nitro-
sylation and decreased activity of this protein in
AD may lead to alteration in its ability to facilitate
disulfide bond formation and rearrangement reac-
tions, increased accumulation of polyubiquitinated
proteins, and activation of the endoplamic reticulum-
resident unfolded protein response. Recently Cho
and colleagues [63] reported increased levels of S-
nitrosylation of dynamin-related protein 1 in brains of
subjects with AD and suggested that S-nitrosylation of
this protein may trigger mitochondrial fission, conse-
quently adding to known mitochondrial damage in AD,
which could contribute to synapse loss and neuronal
damage in this disorder.

Taken together, these studies suggest that oxidation
of proteins is an integral part of the progression and
pathophysiology of AD [64]. The appearance of com-
mon targets of oxidation of proteins between MCI and
AD implies their important roles in loss of cellular
energetics, alterations in neurotransmission and cell
signaling pathways, as well as SP and NFT formation
(Table 2).

Enolase, an oxidatively-modified protein in AD
and MCI brain, is important for regulating glucose
metabolism. However, a number of recent studies
showed that enolase also plays important roles in cell
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signaling, A� clearance, and activation of cell survival
pathways [65]. This result demonstrated that oxidative
dysfunction of one protein may alter several cellu-
lar pathways implicated in the pathogenesis of AD.
This point is further illustrated by GAPDH, which
is also selectively oxidized in AD [19]. GAPDH is
a key enzyme in the glycolytic pathway; however,
recent studies suggest that it may also play key roles
in transcription regulation, cell signaling, and vesic-
ular transportation [66, 67], in addition to binding to
other small molecules such as nitric oxide, glutathione,
and tumor necrosis factor-� [12, 68, 69]. GAPDH
also interacts with A�PP [70]. Hence, oxidative dys-
function of enolase and GAPDH can lead to multiple
changes consistent with pathology, biochemistry, and
clinical presentations of AD and MCI. Modulation of
the cellular pathways altered by the selective oxidation
of both GADPH and enolase could prove to be fertile
ground for the development of novel therapeutic agents
for AD [12, 65].

Another protein that exemplifies how oxidative
modification of one protein can significantly affect
function of AD-relevant pathways and be an impor-
tant therapeutic target is Pin1. By its isomerization of
proline on the carboxyl side of phosphorylated serine
or threonine residues of target proteins, the regula-
tory protein Pin1 has been shown to play an important
role in tau phosphorylation/dephosphorylation, A�PP
regulation and processing, and synapse loss [71–73].
Hence, oxidatively dysfunctional Pin1 conceivably
could be related to the major pathologies of AD: SP,
NFT, and synapse loss [45]. Consequently, targeting
Pin1 to treat AD might be a promising approach to
treat or delay the onset of AD pathogenesis.

In addition, antioxidant enzymes were also found to
be oxidized in common between AD and MCI brain,
and loss of their function would have severe effects on
cell survival [74]. As discussed further below, redox
proteomic discoveries suggest several possible thera-
peutic strategies that may modulate AD progression
and pathogenesis: 1) upregulate the endogenous lev-
els of key oxidatively-modified proteins; 2) restore
function in key oxidatively-modified proteins; or 3)
augment cellular antioxidant systems.

HNE ADDUCTED BRAIN PROTEINS IN AD
AND MCI

Proteomics studies identified regionally specific
HNE modification of proteins, i.e., ATP synthase,
GS, MnSOD, and DRP-2 in AD hippocampus and

�-enolase, aconitase, aldolase, peroxiredoxin 6, and
�-tubulin in AD cortex [75]. Some of these proteins
were previously found to be either nitrated or carbony-
lated in AD [19, 33, 41–43, 45]. The appearance of
different oxidative indices in target proteins modified
by both protein carbonyls and 3-NT supports the role
of oxidative stress in AD and is consistent with the
notion that these specific proteins are highly vulnera-
ble to oxidative modification and may be involved in
AD.

In MCI hippocampus and cortex, increased levels of
protein-bound HNE in neuropolypeptide h3, carbonyl
reductase (NADPH), �-enolase, lactate dehydrogenase
B, phosphoglycerate kinase, heat shock protein 70,
ATP synthase � chain, pyruvate kinase, actin, elon-
gation factor Tu, and translation initiation factor �
were identified by proteomics [47]. Since most of
the proteins that undergo HNE modification are dys-
functional, these proteomic results in amnestic MCI
suggest that these HNE-bound proteins may be key
players in the development of AD. Overlap of pathways
involved in energy metabolism, neuritic abnormalities,
cell cycle, tau phosphorylation, A� production, tran-
scription and translation, mitochondrial abnormalities,
and antioxidant system is consistent with the notion
that these pathways could be involved in the progres-
sion of amnestic MCI to AD.

Increased lipid peroxidation in AD and MCI brain
and a role for A� in this process were further supported
by studies that showed loss of phospholipid asymme-
try in AD and MCI brain, changes that are associated
with apoptosis [76]. Noting that the high reactivity of
free radicals requires that the initiator of lipid perox-
idation must reside in the lipids, the findings above
suggest that, in AD and MCI brain, oligomeric and
hydrophobic A� inserts into the membrane of brain
cells to cause lipid peroxidation and that such changes
are an early event in the pathogenesis and progression
of AD.

In conclusion, redox proteomics studies provided
insights into key molecular pathways that, when oxida-
tively dysfunctional, play a significant role in the
pathophysiology of AD [29]. Development of reliable
and unique biomarkers to detect and diagnose MCI (or
even earlier preclinical AD) and monitor drug efficacy
in these disorders prior to cognitive decline will be
of great importance for our rapidly aging population
and may greatly accelerate the development of ther-
apeutics and preventative approaches. In the future,
redox proteomics of easily accessible bodily fluids or
peripheral tissue in combination of other techniques,
such as PET, MRI, and cognitive testing, may serve
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as diagnostic tools to aid in monitoring the state of
AD and therapeutic efficacy, and potentially provide a
unique biomarker signature for AD. Other future stud-
ies in AD and MCI suggested by our redox proteomics
results are therapeutic targeting (either pharmacologi-
cally or genetically) of key brain proteins that directly
influence multiple AD-relevant pathways.
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