Question #: 1

Which of the following cannot be brought into the lab?

A. Bottle of water
B. Lab notebook
C. Goggles
D. Pen

Question #: 2

Flammable liquids

A. do not evaporate unless boiled.
B. need direct flame for heating.
C. can catch fire easily.
D. can be stored with all other reagents.

Question #: 3

Properly and clearly labeling chemicals in containers helps to reduce

A. putting stoppers on containers.
B. waste of paper.
C. cross-contamination.
D. evaporation.

Question #: 4

It is a sunny 80 °F day in Lexington and four students are on their way to chemistry lab. Which of the following students is correctly dressed for lab?

A. capri pants, UK t-shirt, ballet flats with no socks
B. denim jeans, Old-Navy t-shirt, Nike tennis shoes
C. knee-length sun dress, sandals
D. board shorts, muscle shirt, flip-flops
Question #: 5

If a chemical splashes into your eyes, how long should you hold your eyes in the eye wash?

A. 5 minutes
B. 15 minutes
C. 45 minutes
D. You do not need to use the eye wash.

Question #: 6

A metal cube having a mass of 76 grams is dropped into a graduated cylinder containing 30.00 mL of water. This causes the water level to rise to 39.50 mL. What is the density of the cube?

A. 9.5 g/mL
B. 8.0 g/mL
C. 1.9 g/mL
D. 720 g/mL

Question #: 7

A 10-mL graduated cylinder, shown in picture below, was used to measure the volume of a liquid reagent added to the reaction flask. A section of the graduated cylinder, which includes the meniscus of the solution, is enlarged for illustrative purposes. How many significant figures should be shown in this measurement?

![Graduated Cylinder Image]

A. 1
B. 2
C. 3
D. 4
Question #: 8

On the balance shown below, what will the balance read after it has been tared?

A. 5.4982 g
B. 45.2935 g
C. 0.0904 g
D. 0.0000 g

Question #: 9

How many grams of baking soda (NaHCO₃) do you need to neutralize 250.0 mL of battery acid (H₂SO₄) that has been spilled on your garage floor? Assume that the concentration of the battery acid is 12.00 M.

\[
\text{H}_2\text{SO}_4(aq) + 2 \text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{SO}_4(aq) + 2 \text{CO}_2(g) + 2 \text{H}_2\text{O}(l)
\]

A. 1,220 g
B. 252 g
C. 504 g
D. 756 g

Question #: 10

If 15 grams of anhydrous copper(II) chloride reacts with 20. grams of sodium nitrate to form copper(II) nitrate and sodium chloride, what is the limiting reactant?

A. copper(II) chloride
B. sodium nitrate
C. copper(II) nitrate
D. sodium chloride
Question #: 11

Balance the following chemical reaction by filling in the coefficient blanks below with the smallest possible whole numbers. If the coefficient is 1, enter the number 1.

\[\text{1} \text{ Na}_3\text{PO}_4(aq) + \text{2} \text{ CaCl}_2(aq) \rightarrow \text{3} \text{ NaCl}(aq) + \text{4} \text{ Ca}_3(\text{PO}_4)_2(aq) \]

1. __________
2. __________
3. __________
4. __________

Question #: 12

To avoid plagiarizing, when in doubt,

A. use your peer's review instead.
B. cite the source.
C. don't indicate source material.
D. use your own language style.

Question #: 13

A student is writing a lab report and uses the ideas of another writer, but changes the words and gives no citations. What guideline to avoid plagiarizing did she violate?

A. take clear and consistent notes
B. avoid long quotations
C. avoid complicating your speech with too many citations
D. indicate any words, ideas, etc., that are not your own

Question #: 14

Which of these sources must be cited in the References section of a lab report? Select all that apply.

A. common knowledge
B. textbooks
C. experimental data
D. journal articles
Question #: 15

Determine whether the student’s work is plagiarism and if so, the reason why.

Original text:

“Many organic molecules consist predominantly of a backbone of carbons linked by single bonds, with only hydrogen atoms attached. However, they may also contain doubly or triply bonded carbons, as well as other elements.”

Student’s text:

Organic molecules are made up of single, double or triple bonded carbon atoms linked together, as well as other elements (Vollhardt, et.al.).

A. No, the text is not plagiarized.
B. Yes, because it quotes another person’s actual words and is not appropriately acknowledged.
C. Yes, because it paraphrases another person’s words and it’s not appropriately acknowledged.
D. Yes because it borrows facts, statistics, or other illustrative material, unless the information is common knowledge; and it is not properly acknowledged.

Question #: 16

A molecule of CSe$_2$ has a total of ___1___ valence electron(s) and the carbon atom displays a ___2___ molecular geometry.

1. __________
2. __________

Question #: 17

How many single bonds are present in a CH$_2$CHOCH$_3$ molecule?

A. 1
B. 5
C. 7
D. 8
Question #: 18

What is the formal charge for silver in Ag₂SO₄?

A. +1
B. +2
C. +3
D. +4

Question #: 19

Which of the following molecules has the smallest number of electron groups around the central atom?

A. IF₃
B. PBr₅
C. CCl₄
D. XeF₂

Question #: 20

What is the bond order of the nitrogen-oxygen bonds in the nitrite ion, NO₂⁻?

A. 1.0
B. 1.5
C. 2.0
D. 2.5

Question #: 21

Consider the structure of glycine, shown below without lone pairs. What is the hybridization of the nitrogen atom indicated with the arrow?

A. sp
B. sp²
C. sp³
D. sp³d
Question #: 22

What is the freezing point of a solution prepared by dissolving 11.5 g of Ca(NO₃)₂ in 120.0 g of water? The K_f of water is 1.86 °C/m.

A. −0.583 °C
B. −3.26 °C
C. 0.00 °C
D. 1.49 °C

Question #: 23

What is the predicted van't Hoff factor for a dilute aqueous solution of barium hydroxide?

A. 1
B. 2
C. 3
D. 4
Question #: 24

A student prepared a sugar solution containing 1.0254 g sugar (C\textsubscript{12}H\textsubscript{22}O\textsubscript{11}) in 25.00 mL of water and collected the freezing point data shown below. What is the K_f of water based on the student's data?

![Freezing Point of Pure Water](image1)

![Freezing Point of Sugar Solution](image2)

A. 4.2 °C/m
B. 0.12 °C/m
C. 0.24 °C/m
D. 0.059 °C/m

Question #: 25

Which of the following is not a colligative property of solutions?

A. depression of the freezing point of a solution upon addition of a solute to a solvent
B. depression of vapor pressure upon addition of a solute to a solvent
C. increase in the rate of reaction with an increase in temperature
D. increase in the boiling point of a solution upon the addition of a solute to a solvent
Question #: 26

A solution containing 10.0 g of an unknown non-electrolyte liquid and 90.0 g of water has a freezing point of –3.33 °C. Given that the \(K_f \) of water is 1.86 °C/m, what is the molar mass of the unknown liquid?

A. 69.0 g/mol
B. 619 g/mol
C. 161 g/mol
D. 62.1 g/mol

Question #: 27

A student prepares a solution containing 15.3 grams of sucrose (C\(_{12}\)H\(_{22}\)O\(_{11}\)) in 260 g of water. How many grams of NaCl does the student need to measure out to make a solution of equal molality using the same volume of water? Answers need to contain the correct number of significant figures.

\[\text{1 grams of salt} \]

1. __________

Question #: 28

How does a catalyst work?

A. A catalyst speeds up the reaction by increasing the concentration of the reactants.
B. A catalyst speeds up the reaction by lowering the activation energy.
C. A catalyst speeds up the reaction by increasing the pressure in the reaction vessel.
D. A catalyst doesn't work.

Question #: 29

For a reaction \(2 \text{A} + \text{B} \rightarrow 2 \text{C} \), with the rate equation
\[
\text{rate} = k[A]^2[B]
\]
What is the order with respect to A and the overall order of the reaction?

A. the order with respect to A is 1 and the overall order is 1
B. the order with respect to A is 2 and the overall order is 2
C. the order with respect to A is 2 and the overall order is 1
D. the order with respect to A is 2 and the overall order is 3
Consider the reaction $2 \text{ A} + \text{ B} \rightarrow \text{ C}$. What is the rate law given the following experimental data?

<table>
<thead>
<tr>
<th>[A], M</th>
<th>[B], M</th>
<th>rate, M/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.180</td>
<td>0.250</td>
<td>1.36×10^{-3}</td>
</tr>
<tr>
<td>0.180</td>
<td>0.500</td>
<td>2.72×10^{-3}</td>
</tr>
<tr>
<td>0.720</td>
<td>0.500</td>
<td>1.09×10^{-2}</td>
</tr>
</tbody>
</table>

A. $\text{rate} = [\text{A}]^2[\text{B}]^2$
B. $\text{rate} = [\text{A}]^1[\text{B}]^1$
C. $\text{rate} = [\text{A}]^2[\text{B}]^1$
D. $\text{rate} = [\text{A}]^1[\text{B}]^2$
Question #: 1
Which of the following cannot be brought into the lab?

✓ A. Bottle of water
 B. Lab notebook
 C. Goggles
 D. Pen

Question #: 2
Flammable liquids

A. do not evaporate unless boiled.
B. need direct flame for heating.
✓ C. can catch fire easily.
D. can be stored with all other reagents.

Question #: 3
Properly and clearly labeling chemicals in containers helps to reduce

A. putting stoppers on containers.
B. waste of paper.
✓ C. cross-contamination.
D. evaporation.

Question #: 4
It is a sunny 80 °F day in Lexington and four students are on their way to chemistry lab. Which of the following students is correctly dressed for lab?

A. capri pants, UK t-shirt, ballet flats with no socks
✓ B. denim jeans, Old-Navy t-shirt, Nike tennis shoes
 C. knee-length sun dress, sandals
 D. board shorts, muscle shirt, flip-flops
Question #: 5

If a chemical splashes into your eyes, how long should you hold your eyes in the eye wash?

A. 5 minutes ✓
B. 15 minutes
C. 45 minutes
D. You do not need to use the eye wash.

Question #: 6

A metal cube having a mass of 76 grams is dropped into a graduated cylinder containing 30.00 mL of water. This causes the water level to rise to 39.50 mL. What is the density of the cube?

A. 9.5 g/mL ✓
B. 8.0 g/mL
C. 1.9 g/mL
D. 720 g/mL

Question #: 7

A 10-mL graduated cylinder, shown in picture below, was used to measure the volume of a liquid reagent added to the reaction flask. A section of the graduated cylinder, which includes the meniscus of the solution, is enlarged for illustrative purposes. How many significant figures should be shown in this measurement?

A. 1
B. 2 ✓
C. 3
D. 4
Question #: 8

On the balance shown below, what will the balance read after it has been tared?

A. 5.4982 g
B. 45.2935 g
C. 0.0904 g
√D. 0.0000 g

Question #: 9

How many grams of baking soda (NaHCO₃) do you need to neutralize 250.0 mL of battery acid (H₂SO₄) that has been spilled on your garage floor? Assume that the concentration of the battery acid is 12.00 M.

\[
\text{H}_2\text{SO}_4(aq) + 2 \text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{SO}_4(aq) + 2 \text{CO}_2(g) + 2 \text{H}_2\text{O}(l)
\]

A. 1,220 g
B. 252 g
√C. 504 g
D. 756 g

Question #: 10

If 15 grams of anhydrous copper(II) chloride reacts with 20 grams of sodium nitrate to form copper(II) nitrate and sodium chloride, what is the limiting reactant?

√A. copper(II) chloride
B. sodium nitrate
C. copper(II) nitrate
D. sodium chloride
Question #: 11

Balance the following chemical reaction by filling in the coefficient blanks below with the smallest possible whole numbers. If the coefficient is 1, enter the number 1.

\[\text{1.} \quad \text{Na}_3\text{PO}_4(aq) + \text{2.} \quad \text{CaCl}_2(aq) \rightarrow \text{3.} \quad \text{NaCl}(aq) + \text{4.} \quad \text{Ca}_3(\text{PO}_4)_2(aq) \]

1. 2
2. 3
3. 6
4. 1

Question #: 12

To avoid plagiarizing, when in doubt,

A. use your peer's review instead.

✓ B. cite the source.
C. don't indicate source material.
D. use your own language style.

Question #: 13

A student is writing a lab report and uses the ideas of another writer, but changes the words and gives no citations. What guideline to avoid plagiarizing did she violate?

A. take clear and consistent notes
B. avoid long quotations
C. avoid complicating your speech with too many citations

✓ D. indicate any words, ideas, etc., that are not your own

Question #: 14

Which of these sources must be cited in the References section of a lab report? Select all that apply.

A. common knowledge

✓ B. textbooks
C. experimental data

✓ D. journal articles
Question #: 15

Determine whether the student’s work is plagiarism and if so, the reason why.

Original text:
“Many organic molecules consist predominantly of a backbone of carbons linked by single bonds, with only hydrogen atoms attached. However, they may also contain doubly or triply bonded carbons, as well as other elements.”

Student’s text:
Organic molecules are made up of single, double or triple bonded carbon atoms linked together, as well as other elements (Vollhardt, et.al.).

✓ A. No, the text is not plagiarized.
B. Yes, because it quotes another person’s actual words and is not appropriately acknowledged.
C. Yes, because it paraphrases another person’s words and it’s not appropriately acknowledged.
D. Yes because it borrows facts, statistics, or other illustrative material, unless the information is common knowledge; and it is not properly acknowledged.

Question #: 16

A molecule of CSe2 has a total of ___1___ valence electron(s) and the carbon atom displays a ___2___ molecular geometry.

1. 16[sixteen|Sixteen]
2. linear|Linear

Question #: 17

How many single bonds are present in a CH2CHOCH3 molecule?

A. 1
B. 5
C. 7
 ✓ D. 8
Question #: 18

What is the formal charge for silver in Ag₂SO₄?

✓ A. +1
 B. +2
 C. +3
 D. +4

Question #: 19

Which of the following molecules has the smallest number of electron groups around the central atom?

A. IF₃
B. PBr₅
✓ C. CCl₄
D. XeF₂

Question #: 20

What is the bond order of the nitrogen-oxygen bonds in the nitrite ion, NO₂⁻?

A. 1.0
✓ B. 1.5
C. 2.0
D. 2.5

Question #: 21

Consider the structure of glycine, shown below without lone pairs. What is the hybridization of the nitrogen atom indicated with the arrow?

A. sp
B. sp²
✓ C. sp³
D. sp³d
Question #: 22

What is the freezing point of a solution prepared by dissolving 11.5 g of Ca(NO₃)₂ in 120.0 g of water? The K_f of water is 1.86 °C/m.

A. –0.583 °C
B. –3.26 °C
C. 0.00 °C
D. 1.49 °C

Question #: 23

What is the predicted van't Hoff factor for a dilute aqueous solution of barium hydroxide?

A. 1
B. 2
C. 3
D. 4
Question #: 24

A student prepared a sugar solution containing 1.0254 g sugar (C\textsubscript{12}H\textsubscript{22}O\textsubscript{11}) in 25.00 mL of water and collected the freezing point data shown below. What is the K_f of water based on the student's data?

\[\begin{array}{c}
\text{Freezing Point of Pure Water} \\
\begin{array}{c|cccccccccccc}
\text{Temperature (°C)} & 20 & 18 & 16 & 14 & 12 & 10 & 8 & 6 & 4 & 2 & 0 \\
\hline
\text{time (seconds)} & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{Freezing Point of Sugar Solution} \\
\begin{array}{c|cccccccccccc}
\text{Temperature (°C)} & 25 & 20 & 15 & 10 & 5 & 0 \\
\hline
\text{time (seconds)} & 0 & 10 & 20 & 30 & 40 & 50 \\
\end{array}
\end{array} \]

√A. 4.2 °C/m
B. 0.12 °C/m
C. 0.24 °C/m
D. 0.059 °C/m

Question #: 25

Which of the following is not a colligative property of solutions?

A. depression of the freezing point of a solution upon addition of a solute to a solvent
B. depression of vapor pressure upon addition of a solute to a solvent
√C. increase in the rate of reaction with an increase in temperature
D. increase in the boiling point of a solution upon the addition of a solute to a solvent
Question #: 26

A solution containing 10.0 g of an unknown non-electrolyte liquid and 90.0 g of water has a freezing point of –3.33 °C. Given that the \(K_f \) of water is 1.86 °C/m, what is the molar mass of the unknown liquid?

A. 69.0 g/mol
B. 619 g/mol
C. 161 g/mol
D. 62.1 g/mol

Answer: D. 62.1 g/mol

Question #: 27

A student prepares a solution containing 15.3 grams of sucrose (C\(_{12}\)H\(_{22}\)O\(_{11}\)) in 260 g of water. How many grams of NaCl does the student need to measure out to make a solution of equal molality using the same volume of water? Answers need to contain the correct number of significant figures.

1 grams of salt

1. 2.6|2.6 g|2.7|2.7 g|2.5 g|2.5|

Question #: 28

How does a catalyst work?

A. A catalyst speeds up the reaction by increasing the concentration of the reactants.
B. A catalyst speeds up the reaction by lowering the activation energy.
C. A catalyst speeds up the reaction by increasing the pressure in the reaction vessel.
D. A catalyst doesn't work.

Answer: B. A catalyst speeds up the reaction by lowering the activation energy.

Question #: 29

For a reaction \(2 \, A \, + \, B \, \rightarrow \, 2 \, C \), with the rate equation

\[
\text{rate} = k[A]^2[B]
\]

What is the order with respect to A and the overall order of the reaction?

A. the order with respect to A is 1 and the overall order is 1
B. the order with respect to A is 2 and the overall order is 2
C. the order with respect to A is 2 and the overall order is 1
D. the order with respect to A is 2 and the overall order is 3

Answer: B. the order with respect to A is 2 and the overall order is 2
Question #: 30

Consider the reaction $2\text{ A} + \text{ B} \rightarrow \text{ C}$. What is the rate law given the following experimental data?

<table>
<thead>
<tr>
<th>[A], M</th>
<th>[B], M</th>
<th>rate, M/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.180</td>
<td>0.250</td>
<td>1.36×10^{-3}</td>
</tr>
<tr>
<td>0.180</td>
<td>0.500</td>
<td>2.72×10^{-3}</td>
</tr>
<tr>
<td>0.720</td>
<td>0.500</td>
<td>1.09×10^{-2}</td>
</tr>
</tbody>
</table>

A. rate = $[\text{A}]^2[\text{B}]^2$

✓ B. rate = $[\text{A}]^1[\text{B}]^1$

C. rate = $[\text{A}]^2[\text{B}]^1$

D. rate = $[\text{A}]^1[\text{B}]^2$