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Amyloid β-peptide (Aβ) is thought by many researchers to be central to the patho-
genesis of Alzheimer’s disease (AD) (reviewed in Ref. 1). In addition, oxidative
stress, manifested by protein oxidation and lipid peroxidation, is apparent in AD
brain.2,3 Our laboratory developed a comprehensive hypothesis for neurotoxicity in
AD brain that unites these two observations and provides a testable framework for
much of the AD literature. We proposed an Aβ-associated free radical oxidative
stress model for neuronal death in AD brain2 (FIG. 1). In AD brain, the predominant
forms of Aβ are Aβ(1-40) and Aβ(1-42). Consistent with our model and in ways
completely inhibited by free radical scavengers (antioxidants), Aβ leads to lipid
peroxidation4,5 and protein oxidation6–8 in various brain membrane systems; gener-
ates reactive oxygen species (ROS);7,8 inhibits hippocampal neuronal and cortical
synaptosomal membrane ion-motive ATPases, including Na+/K+-ATPase and Ca2+-
ATPase; blocks glutamate uptake and inhibits the activity of glutamine synthetase
(both of the latter Aβ-induced alterations have the effect of increasing excitotoxic
glutamate levels); causes intracellular Ca2+ levels to increase dramatically;8 and
leads to neurotoxicity in hippocampal neuronal or astrocytic cultures (reviewed in
Ref. 2).

A prediction of the Aβ-associated free radical oxidative stress model for neuro-
toxicity in AD brain is that Aβ(1-42), the predominant form of Aβ found in AD, will
induce protein oxidation. A key marker of protein oxidation is protein carbonyl con-
tent.9 Previous studies showed increased antioxidant-inhibited protein oxidation in
hippocampal neuronal cultures induced by Aβ(1-40)8 and Aβ(25-35).6,7 In the cur-
rent study, we provide evidence for Aβ(1-42)–induced ROS generation in vitro and
protein oxidation in vitro and in vivo. In agreement with our model (FIG. 1), 10 µM
Aβ(1-42) added to cultured hippocampal neurons led to ROS formation that was in-
hibited by vitamin E (Fig. 2A) and induced significantly greater protein oxidation
than in controls (Fig. 2B). In addition to the in vitro studies, in vivo studies were car-
ried out. We reported earlier that AD brain regions rich in Aβ-containing senile
plaques had significantly increased protein oxidation but Aβ-poor cerebellum did
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not.10 If our model is correct, then one may predict that transgenic animals overex-
pressing Aβ(1-42) should show increased protein oxidation in vivo. Caenorhabditis
elegans (C. elegans) transgenic animals expressing full-length Aβ(1-42) were pro-
duced,11 and protein oxidation was determined. In agreement with predictions of our
model and with our earlier studies in AD brain,10 Aβ(1-42)–expressing animals had
significantly increased protein oxidation in vivo (FIG. 2C). To gain some insight into
potential molecular mechanisms by which Aβ(1-42) led to protein oxidation in vivo,
methionine was mutated to cys in this in vivo model of Aβ(1-42) expression. Con-
sistent with previous in vitro studies of methionine substitution in Aβ(25-35) and
Aβ(1-40) (2,13), no in vivo protein oxidation was found. 

These findings are consistent with the Aβ-associated free radical oxidative stress
model of neurotoxicity in AD brain2 (FIG. 1). Other sequelae of Aβ(1-42)–induced
in vitro and in vivo oxidative stress and their inhibition by antioxidants are currently

FIGURE 1. Flow diagram of our comprehensive model for Aβ-associated free radical
oxidative stress–induced neurotoxicity in Alzheimer’s disease brain. See Ref. 2 for a review
and greater details. 



267BUTTERFIELD et al.: PROTEIN OXIDATION

under investigation. These current and ongoing studies may provide additional in-
sight into AD pathogenesis and therapeutic strategies.
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FIGURE 2. A. Reactive oxygen species production in cultured hippocampal neurons to
which Aβ(1-42) had been added. ROS are assessed by fluorescence of 2,7-dicholorofluores-
cein, formed by reaction of peroxyl radicals or hydrogen peroxide to the DCF dye employed.
B. Protein carbonyls (dark bars), a measure of protein oxidation, and cell survival (lighter
bars) of hippocampal neurons to which Aβ(1-42) had been added. Percent increased protein
carbonyls in Aβ(1-42)–treated neurons over that of controls; mean ± SEM: 163 ± 2%, p <
0.01, n = 3. Percent cell survival was decreased significantly in Aβ(1-42)–treated neurons
(76.3% of control cells, p < 0.01, n = 3). C. In vivo protein oxidation was found in C. elegans
transgenic animals expressing full-length Aβ(1-42). (1) Protein carbonyls in vector control
animals were assigned a value of 100%, n = 5. (2) Percent increased protein carbonyls over
that of vector control; mean � SEM: 176 � 3%, p < 0.001, n = 5). (3) Protein carbonyls in
transgenic animals in which methionine residue 35 in Aβ(1-42) was mutated to cysteine
were equal to those of vector controls—e.g., no increase in protein oxidation was found. 
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