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a b s t r a c t

Alzheimer disease (AD) is an age-related neurodegenerative disorder characterized by progressive mem-
ory loss, inability to perform the activities of daily living and personality changes. Unfortunately, drugs
effective for this disease are limited to acetylcholinesterase inhibitors that do not impact disease patho-
genesis. Statins, which belong to the class of cholesterol-reducing drugs, were proposed as novel agents
useful in AD therapy, but the mechanism underlying their neuroprotective effect is still unknown. In this
study, we show that atorvastatin may have antioxidant effects, in aged beagles, that represent a natural
higher mammalian model of AD. Atorvastatin (80 mg/day for 14.5 months) significantly reduced lipoper-
torvastatin
holesterol oxidation products
xidative stress
ognitive function

oxidation, protein oxidation and nitration, and increased GSH levels in parietal cortex of aged beagles.
This effect was specific for brain because it was not paralleled by a concomitant reduction in all these
parameters in serum. In addition, atorvastatin slightly reduced the formation of cholesterol oxidation
products in cortex but increased the 7-ketocholesterol/total cholesterol ratio in serum. We also found
that increased oxidative damage in the parietal cortex was associated with poorer learning (visual dis-
crimination task). Thus, a novel pharmacological effect of atorvastatin mediated by reducing oxidative

hanis
damage may be one mec

. Introduction

Under physiological conditions, cell homeostasis is finely regu-
ated by a balance between pro-oxidant and anti-oxidant stimuli;
owever, certain environmental factors, stressors, or diseases may
ffect this equilibrium and increase production of reactive oxygen
pecies (ROS) and reactive nitrogen species (RNS). Both ROS and
NS may react with biomolecules including proteins, lipids, car-

ohydrates, DNA and RNA [1] leading to their oxidative damage
esulting in cellular dysfunction [2–5]. Several lines of evidence
ave shown that oxidative stress levels are elevated in the brains

rom subjects with Alzheimer disease (AD) [4,6–13].AD is an

Abbreviations: PC, protein carbonyls; HNE, 4-hydroxy-2-nonenal; 3-NT, 3-
itrotyrosine; A�, amyloid beta peptide; 7-K, 7-ketocholesterol; 25-OH, 25-hydroxy
holesterol.
∗ Corresponding author. Tel.: +1 859 257 3184; fax: +1 859 259 5876.

E-mail address: dabcns@uky.edu (D.A. Butterfield).
1 Both authors contributed equally.

043-6618/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.phrs.2010.12.007
m underlying benefits of this drug in AD.
© 2010 Elsevier Ltd. All rights reserved.

age-related neurodegenerative disorder characterized histopatho-
logically by the presence of senile plaques (SP), neurofibrillary
tangles (NFT), and synapse loss in selected brain regions such
as medial temporal lobe [14–16]. The main component of senile
plaques is amyloid beta-peptide (A�), a 40–42 amino acid peptide
derived by the proteolytic cleavage of amyloid precursor protein
(APP) through the activity of beta- and gamma-secretases, and SP
are extracellular in localization. A number of in vitro and in vivo
studies have shown that A�(1–42) is a neurotoxic peptide which
exists in both soluble (monomers, oligomers, and protofibrils) and
insoluble (fibrils) forms. Recent studies have suggested that the
small oligomers, rather than A� fibrils, are the actual toxic species of
this peptide [17–20] and they generate oxidative/nitrosative dam-
age in the brain [4,6,21–25] that may be responsible for the clinical
aspects of the disease, including memory loss and dementia.
Cholesterol is a major lipid constituent of cellular membrane,
and regulates cell signaling pathways, gene transcription, as well
as the availability of bioactive steroids [26–28]. The cholesterol con-
tent of the CNS is largely independent of dietary uptake or hepatic
synthesis, as circulating cholesterol does not cross the blood–brain

dx.doi.org/10.1016/j.phrs.2010.12.007
http://www.sciencedirect.com/science/journal/10436618
http://www.elsevier.com/locate/yphrs
mailto:dabcns@uky.edu
dx.doi.org/10.1016/j.phrs.2010.12.007


gical R

b
l
o
a
o
o
m
s
h
n
i

u
h
i
o
l
u
[
t
b
w
i
m
s
i
w
a

i
t
w
n

2

2

f
a
c
a
h
w
t
1
r
c
e
g
c

2

m
f
w
t

2

p
A

phosphatase inhibitor cocktail (Sigma–Aldrich). The brain tissues
(parietal cortex) from control and atorvastatin-treated dogs were
E. Barone et al. / Pharmacolo

arrier. Brain cholesterol turnover is extremely slow, with a half-
ife estimated in years in humans [26,29]. Cholesterol can undergo
xidative modifications at least by two mechanism: a direct radical
ttack involving ROS or RNS (non-enzymatic way), or by the activity
f a specific enzymes (enzymatic way). This leads to the formation
f cholesterol oxidation products, called oxysterols. These latter are
ajor regulators of cholesterol homeostasis in the central nervous

ystem [27]. Among oxysterols, 7-ketocholesterol (7-K) and 25-
ydroxycholesterol (25-OH) have been shown to cause apoptotic
euronal death by inducing mitochondrial dysfunction [30], Ca2+

nflux and perturbation of intracellular ionic homeostasis [31,32].
There is accumulating evidence that cholesterol and its prod-

cts may be implicated in the pathogenesis of dementia, and this
as led investigators to assess the possible role of lipid lower-

ng agents in the treatment of dementia. Several cross-sectional
r case–control epidemiological studies have revealed a striking
ink between cholesterol-lowering drugs (statins or others) and
p to 70% reduction in AD prevalence in the general population
33–40]. Furthermore, in preliminary AD clinical trials with simvas-
atin [41] and atorvastatin [42,43] modest cognitive benefits have
een reported. In particular, mild-to-moderate AD subjects treated
ith atorvastatin (80 mg/day) exhibited a significant improvement

n cognitive function (evaluated by the Alzheimer Disease Assess-
ent Scale-Cognitive, ADAS-cog) at 6 months with smaller non

ignificant benefits at 12 months [43]. The LEADe study is also ongo-
ng and involves testing atorvastatin (80 mg/day) in combination

ith donepezil in patients with AD, but given previous studies this
pproach may provide similar modest benefits [44].

The purpose of this study was to evaluate if a long-term admin-
stration of high dose (80 mg/day) of atorvastatin in aged beagles,
hat represent a good pre-clinical model of AD [45], is associated
ith more benefits due to its ability to modulate oxidative and
itrosative stress-induced changes in protein and lipid profiles.

. Materials and methods

.1. Animals

Twelve beagles ranging in age from 8.9 to 13.2 yrs were obtained
rom the Lovelace Respiratory Research Institute and Harlan (Indi-
napolis, IN). Based on our previous work, dogs of this age show
ognitive decline and significant amounts of brain A� [45,46]. All
nimals had documented dates of birth, comprehensive medical
istories and a veterinary examination ensuring that the animal
as in good health prior to the start of the study. At the end of

he study, all but one control animal had received treatment for
4.5 months and they ranged in age from 10.1 to 14.6 yrs. All
esearch was conducted in accordance with approved IACUC proto-
ols. Animals were ranked by cognitive test scores and placed into
quivalent groups with 2 males and 4 females per group. These
roups were randomly designated as either the placebo-treated
ontrol group or the atorvastatin-treated group.

.2. Cognitive testing

Animals were given a series of cognitive tests while on treat-
ent as described previously [47]. For the current study, scores

rom the size discrimination learning problem was used as they
ere obtained after 6 months of treatment and was sensitive to

reatment effects.
.3. Drug treatment

Atorvastatin calcium (also known as Lipitor®,40 mg tablets) and
lacebo tablets were kindly provided by Pfizer Inc. (New York, NY).
torvastatin-treated animals received 2 × 40 mg tablets per day for
esearch 63 (2011) 172–180 173

a daily dose of 80 mg, and control animals received 2 placebo tablets
per day. Atorvastatin was chosen for this study because long term
studies using an 80 mg/day dose in dogs did not report adverse
events such as cataracts [48]. In addition, the administration of
80 mg/day atorvastatin in hypercholesterolemic people produces
plasma drug concentrations in the range 187–252 ng/ml [49–51],
which is comparable to that achieved in dogs treated with 6 mg/kg
atorvastatin (about 90 mg/dog, i.e., about 500 ng/ml [52]).

2.4. Serum samples

Serum samples were collected as previously described [47].
Briefly, blood samples were collected in 10 cm3 tubes without
anti-coagulant EDTA at regular intervals prior to and during the
treatment study. Serum was aliquoted and frozen at −80 ◦C. For
the current study, serum collected 62 days prior to euthanasia was
analyzed.

2.5. Tissue collection

Twenty minutes before induction of general anesthesia, ani-
mals were sedated by subcutaneous injection with 0.2-mg/kg
acepromazine. General anesthesia was induced by inhalation with
5% isoflurane. While maintained under anesthesia, dogs were
exsanguinated by cardiac puncture. Within 15 min, the brain was
removed from the skull and sectioned midsagitally. The intact left
hemisphere was immediately placed in 4% paraformaldehyde for
48–72 h at 4 ◦C prior to long term storage in phosphate buffered
saline containing 0.02% sodium azide at 4 ◦C. The right hemi-
sphere was coronally sectioned (∼1 cm) and flash frozen at −80 ◦C.
The dissection procedure was completed within 20 min yielding a
35–45 min postmortem interval.

2.6. Measurement of serum and brain cholesterol

A detailed description of each measurement for the current
study has been described previously [47]. Briefly, for serum sam-
ples, fresh samples were immediately provided to a commercial
laboratory for measures of basic biochemistry (e.g., liver func-
tion), cholesterol, triglycerides, low density lipoproteins (LDL), and
high density lipoproteins (HDL). For brain samples, frozen tis-
sues were weighed and homogenized in methanol containing the
following internal standards: heptadecanoic acid (Nu-Chek Prep,
Elysian, MN) and cholesterol-D7 (Avanti Polar Lipids, Alabaster, AL).
Lipids were extracted with 2 volumes of chloroform and washed
with 1 volume of water. Organic phases were collected and dried
under liquid N2. Lipids were reconstituted in chloroform/methanol
(1:4, vol/vol, 0.1 ml) for liquid chromatography/mass spectrometry
(LC/MS) analyses [47].

2.7. Sample preparation

Serum samples from control and atorvastatin-treated dogs were
diluted 10-fold with Media I lysis buffer (pH 7.4) containing
320 mM sucrose, 1% of 990 mM Tris–HCl (pH 8.8), 0.098 mM MgCl2,
0.076 mM EDTA, proteinase inhibitors leupeptin (0.5 mg/ml), pep-
statin (0.7 �g/ml), aprotinin (0.5 mg/ml) and PMSF (40 �g/ml) and
thawed and placed in Media I buffer. The brains were homogenized
by 20 passes of a Wheaton tissue homogenizer, and the resulting
homogenate was centrifuged at 14,000 × g for 10 min to remove
debris. The supernatant was extracted to determine the total pro-
tein concentration by BCA method (Pierce, Rockford, IL, USA).
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.8. Protein carbonyls

Samples (5 �l) of parietal cortex homogenate or diluted serum,
2% sodium dodecyl sulfate (SDS; 5 �l), and 10 �l of 10 times
iluted 2,4-dinitrophenylhydrazine (DNPH) from 200 mM stock
ere incubated at room temperature for 20 min, followed by
eutralization with 7.5 �l neutralization solution (2 M Tris in
0% glycerol). Protein (250 ng) was loaded in each well on a
itrocellulose membrane under vacuum using a slot blot appa-
atus. The membrane was blocked in blocking buffer (3% bovine
erum albumin) in PBS 0.01% (w/v) sodium azide and 0.2%
v/v) Tween 20 for 1 h and incubated with a 1:100 dilution
f anti-DNP polyclonal antibody in PBS containing 0.01% (w/v)
odium azide and 0.2% (v/v) Tween 20 for 1 h. The membrane
as washed in PBS following primary antibody incubation three

imes at intervals of 5 min each. The membrane was incubated
fter washing with an anti-rabbit IgG alkaline phosphatase sec-
ndary antibody diluted in PBS in a 1:8000 ratio for 1 h. The
embrane was washed three times in PBS for 5 min each and

eveloped with Sigma fast tablets (5-bromo-4-chloro-3-indolyl
hosphate/nitroblue tetrazolium substrate [BCIP/NBT substrate]).
lots were dried, scanned in Adobe Photoshop, and quanti-
ed in Scion Image (PC version of Macintosh-compatible NIH

mage). No nonspecific binding of antibody to the membrane was
bserved.

.9. Protein-bound HNE and 3-NT

Samples (5 �l) of parietal cortex homogenate or diluted serum,
2% SDS (5 �l), and 5 �l modified Laemmli buffer containing
.125 M Tris base, pH 6.8, 4% (v/v) SDS, and 20% (v/v) glycerol
ere incubated for 20 min at room temperature and were loaded

250 ng) in each well on a nitrocellulose membrane in a slot blot
pparatus under vacuum. The membrane was treated as described
bove and incubated with a 1:5000 dilution of anti protein-bound
NE polyclonal antibody or 1:2000 3-NT antibody in PBS for 1 h
0 min. The membranes were further developed and quantified as
escribed above. A faint background staining resulting from the
ntibody alone was observed, but, because each sample had a con-
rol, this minor effect was controlled.

.10. Extraction procedures

7-Ketocholesterol and 25-OH were extracted from both serum
nd brain samples as previously described [53] with modifica-
ions. Briefly, for serum samples, 1 ml of serum from control and
torvastatin-treated dogs, was mixed with 1 ml of ethanol con-
aining 0.1 mM butylated hydroxytoluene and extracted with 3 ml
f hexane. For brain samples, 1 ml of homogenate was mixed
ith 1 ml of methanol and extracted with 3 ml of hexane. Each

ample was then centrifuged at 4000 × g for 10 min to separate
he hexane layer from the solution. The hexane phase was then
vaporated to dryness under nitrogen stream and the residues
e-dissolved in methanol. Twenty microliters was analyzed by
PLC.
.11. HPLC equipment

The HPLC system consisted of a Waters 616 quaternary pump,
quipped with a Waters 996 Diode array detector that was used for
he analysis. The samples were eluted through a Thermo Scientific
ypersil GOLD column (C18, 4.6 cm × 25 cm, 5 �m particle size),
ith a guard column (10 mm) of the same material matrix.
esearch 63 (2011) 172–180

2.12. Measurement of serum and brain 7-ketocholesterol and
25-hydroxycholesterol levels

The HPLC evaluation of 7-K and 25-OH was performed as previ-
ously described by Chen and Chen [54] with modifications. Briefly,
the samples were analyzed by using a mobile phase of acetoni-
trile:methanol (55:45, v/v) and UV detector. The flow-rate was
maintained at 0.5 ml/min for 30 min. The wavelength for UV detec-
tion was set at 234 nm for 7-K, and at 212 nm for 25-OH. 7-K and
25-OH concentrations were calculated by reference to a standard
curve of 7-K and 25-OH (0.39–50 �M) in methanol. By this method,
a linear fitting (r2 = 0.99) has been obtained.

2.13. Reduced (GSH) and oxidized (GSSG) glutathione assay

Determination of GSH and GSSG was performed by the method
of Hissin and Hilf [55]. Briefly, tissue homogenate was depro-
teinated with 10% meta-phosphoric acid, and after a centrifugation
at 100,000 × g for 30 min at 4 ◦C, the deproteinated supernatant
was used for GSH and GSSG assays. Reduced glutathione was
measured by adding deproteinated sample (10 �l) to a mixture
of o-phthalaldehyde (1.0 mg/ml in reagent grade methanol) and
0.1 M phosphate-buffered saline (pH 8) with 5 mM EDTA. After
incubation for 15 min at room temperature, flourescence at emis-
sion 420 nm was recorded following excitation at 350 nm. Oxidized
glutathione was measured by adding 10 �l of deproteinated sam-
pled to 0.04 M N-ethylmaleimide for 30 min to interact with GSH
present in the sample. This mixture was added to a mixture con-
taining o-phthalaldehyde (1.0 mg/ml), 0.1 N NaOH. After incubation
for 15 min at room temperature, flourescence at emission 420 nm
was recorded by excitation at 350 nm.

2.14. Statistical analysis

Data are expressed as mean ± SD of N independent samples. All
statistical analysis was performed using a two-tailed Student’s t-
test. p < 0.05 was considered significantly different from control.
Pearson correlations were calculated to test the linear association
between cognitive test scores and markers of oxidative damage.

3. Results

3.1. Effect of atorvastatin treatment on the levels of oxidative and
nitrosative stress markers in both parietal cortex and serum

In the current study, a comparative analysis of the levels of
oxidative and nitrosative stress markers was carried out in both
parietal cortex and serum obtained after a chronic administra-
tion of atorvastatin (80 mg/day for 14.5 months) in aged beagles.
As shown in Fig. 1A, C, and E, atorvastatin treatment produced
a significant decrease of protein carbonyls (PC) (t = 2.325, df = 10,
p = 0.042), 4-hydroxy-2-nonenal (HNE) (t = 3.115, df = 9, p = 0.012)
and 3-nitrotyrosine (3-NT) (t = 2.331, df = 10, p = 0.042) levels of
∼10.8%, 31.6% and 25.6%, respectively, in the parietal cortex com-
pared to the control group. Conversely, as shown in Fig. 1B, 1D and
1F, in serum samples obtained from atorvastatin treated dogs a
non-statistically significant trend towards increased levels of each
oxidative stress marker was observed with respect to the control
group (PC, t = 1.375, df = 8, p = 0.21; HNE, t = 0.97, df = 9, p = 0.36;
3-NT, t = 1.54, df = 9, p = 0.16).
3.2. Atorvastatin effects on brain and serum levels of
7-ketocholesterol and 25-hydroxycholesterol

In order to address the hypothesis whether the differences
observed in the expression of oxidative stress markers in serum
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Fig. 1. In vivo oxidative and nitrosative modifications observed in brain (parietal cortex) (Panels A, C and E) and serum (Panels B, D, and F) of aged beagles during lipid-
l C and
o y (Pan
p nsitom
a orvast

a
t
t
c
m
d
p
i
(
w

owering therapy with atorvastatin (80 mg/day). (A and B) Protein carbonyls (PC), (
r serum samples were probed with anti-DNP protein adducts polyclonal antibod
olyclonal antibody (Panels E and F) as described under Materials and Methods. De
re expressed as mean ± SD of three replicates for each of individual control and at

nd parietal cortex could be linked, at least in part, to a forma-
ion of well known pro-oxidant products of cholesterol oxidation,
he levels of 7-K and 25-OH cholesterol both in serum and parietal
ortex were measured. There were no significant atorvastatin-
ediated changes in the absolute levels of 7-K (−28%) (t = 1.45,
f = 9, p = 0.18) (Fig. 2, Panel A) and 25-OH (−18%) (t = 1.19, df = 9,
= 0.26) (Fig. 2, Panel C) in parietal cortex. Conversely, as shown

n Fig. 3, atorvastatin slightly increased the absolute levels of 7-K
+20%) (t = 1.94, df = 9, p = 0.08) in serum (Panel A) while no change
ere observed for 25-OH (t = 0.40, df = 9, p = 0.70) (Panel C). 7-
D) protein-bound HNE and (E and F) 3-NT levels. Brain samples of parietal cortex,
el A and B), anti-HNE polyclonal antibody (Panels C and D) and anti-nitrotyrosine
etric values shown are given as percentage of the control group, set as 100%. Data

atin treated beagle, per group. *p < 0.05 versus control (Student’s t-test).

K and 25-OH also vary as a function of total cholesterol, and as
shown in Fig. 2, the ratio of both 7-K/total cholesterol and 25-
OH/total cholesterol were decreased, in parietal cortex, by 48%
(Panel B) and 43% (Panel D), respectively, although no signifi-
cant differences were observed with respect to the control group

(7-K/total cholesterol, t = 1.81, df = 9, p = 0.10; 25-OH/total choles-
terol, t = 2.12, df = 9, p = 0.06). In contrast, a significant increase
was observed for the serum ratio of 7-K/total cholesterol (+
49%) (t = 3.6, df = 9, p = 0.006) (Fig. 3, Panel B), while no change
in the blood ratio of 25-OH/total cholesterol (t = 0.11, df = 9,
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ig. 2. Changes in brain (parietal cortex) concentrations of 7-ketocholesterol (7-K)
torvastatin (80 mg/day). Parietal cortex levels of (A) 7-K (absolute levels), (B) 7-K/
re expressed as mean ± SD of n = 5 (controls) and n = 6 (atorvastatin-treated) indiv

= 0.92) (Fig. 3, Panel D) with respect to the control group was
bserved.

.3. Atorvastatin and the glutathione system in dog parietal
ortex

A major mechanism involved in the brain adaptive response to
xidative stress is the modulation of the glutathione system. As
hown in Fig. 4, atorvastatin significantly increased the GSH con-
entration in the parietal cortex of treated dogs (t = 2.38, df = 10,
= 0.03), whereas no significant change was found in GSSG levels

t = 0.718, df = 10, p = 0.489). As result, the GSH/GSSG ratio sig-
ificantly increased in the brain of atorvastatin-treated animals
t = 2.42, df = 9, p = 0.03).

.4. Atorvastatin-induced changes in oxidative stress levels are
orrelated with learning

We next hypothesized that the reduced brain oxidative dam-
ge in response to atorvastatin would be associated with learning

rror scores. We analyzed the association between each marker’s
PC, HNE, 3-NT, 7-K/total cholesterol and 25-OH/total cholesterol)
oncentrations and size discrimination learning error scores across
reatment and control groups. Interestingly, discrimination learn-
ng error scores were positively correlated with parietal cortex PC
5-hydroxycholesterol (25-OH) in aged beagles during lipid-lowering therapy with
holesterol ratio (C) 25-OH (absolute levels), (D) 25-OH/total cholesterol ratio. Data
amples per group.

(Pearson r = 0.702, p = 0.0236), HNE (Pearson r = 0.826, p = 0.006),
and 3-NT (Pearson r = 0.588, p = 0.073) (Fig. 5, Panel A–C). These
results suggest that poorer learning was associated with higher
levels of oxidative damage. Although correlations were signifi-
cant also for 7-K/total cholesterol (Pearson r = 0.751, p = 0.012) and
25-OH/total cholesterol (Pearson r = 0.759, p = 0.017) this was pri-
marily due to one animal showing a high error score and very high
7-K/total cholesterol and 25-OH/total cholesterol ratios. No cor-
relations were found with serum levels of each marker (data not
shown).

4. Discussion

Aged beagles represent a good pre-clinical model of AD because
they deposit endogenous levels of A� of identical sequence to
human A� [56] as they age and thus are a natural higher mam-
malian model of aging. The canine �-amyloid precursor protein
(APP) is virtually identical to human APP (∼98% homology). Most
of the deposits in the canine brain are of the diffuse subtype, but are
fibrillar at the ultrastructural level and at an advanced stage, which

models early plaque formation in humans [57–59]. Moreover in
terms of the pattern and severity of cognitive decline, the aged
canine parallels age-associated memory impairment in humans
[60]. The current study represents the first evidence that in aged
dogs, chronic treatment with atorvastatin, may exert anti-oxidant
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ig. 3. Changes in serum concentrations of 7-ketocholesterol (7-K) and 25-hydro
80 mg/day). Serum levels of (A) 7-K (absolute levels), (B) 7-K/total cholesterol ra

ean ± SD of n = 5 (controls) and n = 6 (atorvastatin-treated) individual samples per

ffects on the brain. Although the sample size was relatively small,
onsistent effects with multiple oxidative stress outcome measures
uggest this may be a robust effect.

It is well known that statins are the most prescribed drugs
orldwide for the treatment of hypercholesterolemia [61] and
ue to their ability to reduce cardiovascular events [62]. The
ain mechanism of action of statins is to lower cholesterol by

cting on hydroxyl-methylglutaryl (HMG)-CoA reductase, a key
nzyme responsible for the synthesis of cholesterol. Moreover,
here are many downstream modifications to other molecular path-
ays leading to pleiotropic effects that may be both beneficial

nd adverse [63,64]. Interestingly, many pathways modified by
tatins could have direct effects on AD pathogenesis and A� associ-
ted neuropathology. Among these effects is the antioxidant effect
xerted by atorvastatin [65–69].

Interestingly, statins are also associated with the reduced risk to
evelop AD [36,61]. The mechanism by which statins may reduce
he risk of incident AD may be through the reduction of A� [70].
igh dietary cholesterol in transgenic mouse models of AD leads

o increases in brain A� [71]. In contrast, reducing cholesterol [72]
r treatment with statins can reduce A� [73]. However, rodents
espond to statin treatment by up-regulating HMG-CoA reductase

evels after suppression by statins in the liver, the net effect of which
s to prevent any stable, long term reduction in cholesterol levels
74]. This leads to difficulties in conducting long term studies in
odents with extensive behavioral testing but additionally leads
o doses of statins that are physiologically excessive relative to
lesterol (25-OH) in aged beagles during lipid-lowering therapy with atorvastatin
25-OH (absolute levels), (D) 25-OH/total cholesterol ratio. Data are expressed as

p. **p < 0.01 versus control (Student’s t-test).

human clinical trials. Thus, translating outcomes from rodent stud-
ies to humans is limited. In contrast, aged beagles, are a good model
of human aging and disease and show cognitive and neurological
changes with age that are consistent with human [75].

Although epidemiological studies show that statins are associ-
ated with reduced risk of AD, typically these observational studies
are from individuals who are hypercholesterolemic and require
statin treatment. However, several clinical studies and a meta-
analysis of a pooled set of clinical studies [76] were completed
in AD patients who were normocholesterolemic as were our ani-
mals. Thus, the work in dogs is comparable to humans particularly
if statins were to be used as a means to improve cognition in AD
patients who may or may not have high cholesterol. Our study
suggests that statins may improve or maintain cognition through
mechanisms independent of cholesterol reduction, particularly in
the brain. The latter would have important implications for using
statins to treat AD as not all patients with AD have high cholesterol
levels and a concern is that reducing cholesterol below optimal
levels may lead to adverse events.

This study suggests that an additional benefit of atorvastatin is
possible based on its antioxidant properties. The significant corre-
lations found between decreased levels of oxidative stress markers

and decrease in size discrimination error score (reflecting improved
cognition), observed in aged dogs after treatment with atorvastatin
(Fig. 4) led us to speculate that the effect on cognition could be due
to the reduced oxidative stress instead of the ability of atorvas-
tatin to reduce cholesterol levels. Indeed, our previous studies [47]
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Fig. 4. Changes in brain (parietal cortex) concentrations of reduced glutathione
(GSH),oxidized glutathione (GSSG), and in the reduced/oxidized ratio (GSH/GSSG) in
a
c
o

s
t
i
b
r
s
s

of cholesterol oxidation products both as in vivo markers of
oxidative stress [78–80], as well as for their pro-oxidant features
[30–32,81], few studies exist regarding the effect of statins on
cholesterol oxidation products in vivo [78,82,83]. Moreover, differ-

Fig. 5. Correlation between individual oxidative/nitrosative stress markers mea-
ged beagles during lipid-lowering therapy with atorvastatin (80 mg/day). Parietal
ortex levels of (A) GSH, (B) GSSG (C) GSH/GSSG. Data are expressed as mean ± SD
f n = 6 (controls) and n = 6 (atorvastatin-treated) individual samples per group.

howed that atorvastatin did not significantly reduce brain choles-
erol or A� levels in these aged dogs, despite a significant reduction
n plasma cholesterol levels [47]. A lack of significant reduction of

rain cholesterol and A� may reflect the lower blood–brain bar-
ier penetrance of atorvastatin compared to other statins such as
imvastatin [77]. Thus, it is conceivable that the reduced oxidative
tress exerted in parietal cortex (Figs. 1 and 2) could be attributable
esearch 63 (2011) 172–180

to a modulation of other systems. Increased GSH concentration and
elevated GSH/GSSG ratio in parietal cortex secondary to atorvas-
tatin treatment also supports the hypothesis that atorvastatin could
exert its pleiotropic actions through multiple pathways.

This study provides novel information regarding the levels
of cholesterol oxidation products following chronic atorvastatin
administration. Although some evidence suggests the importance
sured in the parietal cortex and size discrimination learning error scores in aged dogs
during lipid-lowering therapy with atorvastatin (80 mg/day). A positive correlations
were found between size discrimination error scores and (A) PC (Pearson r = 0.702,
p = 0.0236), (B) protein-bound HNE (Pearson r = 0.826, p = 0.006). (C) 3-NT (Pearson
r = 0.588, p = 0.073) showed a similar trend but was not statistically significant.
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nt effects were observed for cholesterol reduction in brain and
lasma of aged dogs treated with atorvastatin [47]. Surprisingly, a
eduction of cholesterol was not associated with a reduction of 7-K
r 25-OH and vice versa. This result suggests that might be two inde-
endent effects of atorvastatin. In fact, the absolute levels of both
-K and 25-OH were reduced in brain, while 7-K absolute levels
ere increased in serum without change in 25-OH in dogs receiving

torvastatin. Further, after correction for total cholesterol [65,78],
e observed consistent effects.

Taken together, these observations suggest a novel mechanism
f action for statins that may contribute to reports of a reduced
isk of developing AD. It would be interesting to test other statins,
ith higher blood–brain barrier penetrance, to determine if this is a

ignificant contributor to the current findings. Indeed, the results of
he canine study are consistent with a previous study conducted by
arjani et al., who showed that atorvastatin could have both anti- or
ro-inflammatory features, which were independent of HMG-CoA
eductase inhibition and can be mediated directly by atorvastatin
84].

In conclusion, the results of this study suggest that atorvastatin
an exert antioxidant effects in brain independent of its ability to
educe cholesterol and through the activation of the GSH system,
hich may mediate cognitive benefits.
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